Behavioral Phenotyping for Autism Spectrum Disorders in Mice

Yu‐Chi Chang1, Toby B. Cole2, Lucio G. Costa3

1 Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, 2 Center on Human Development and Disability, University of Washington, Seattle, Washington, 3 Department of Neuroscience, University of Parma Medical School, Parma
Publication Name:  Current Protocols in Toxicology
Unit Number:  Unit 11.22
DOI:  10.1002/cptx.19
Online Posting Date:  May, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Autism spectrum disorder (ASD) represents a heterogeneous group of disorders characterized by alterations in three behavioral symptom domains: Social interactions, verbal and nonverbal communication, and repetitive behaviors. Increasing prevalence of ASD in recent years suggests that exposure to environmental toxicants may be critical in modulating etiology of this disease. As clinical diagnosis of autism still relies on behavioral evaluation, it is important to be able to assess similar behavioral traits in animal models, to provide biological plausibility of associations between environmental exposures and ASD. Rodents naturally exhibit a large number of behaviors that can be linked to similar behaviors in human. In this unit, behavioral tests are described that are relevant to the domains affected in ASD. For the repetitive domain, the T‐maze spontaneous alternation test and marble burying test are described. For the communication domain, neonatal ultrasonic vocalization and olfactory habituation test toward social and non‐social odor are described. Finally, for the sociability domain, the three‐chambered social preference test and the reciprocal interaction test are presented. © 2017 by John Wiley & Sons, Inc.

Keywords: autism spectrum disorders; behavior; mouse; obsessive‐compulsive disorder (OCD); social behavior; olfactory communication; ultrasonic vocalization

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Marble Burying
  • Basic Protocol 2: T‐maze Spontaneous Alternation
  • Basic Protocol 3: Neonatal Ultrasonic Vocalization
  • Basic Protocol 4: Olfactory Habituation Test
  • Support Protocol 1: Collection and Storage of Urine Samples
  • Basic Protocol 5: Three‐Chambered Social Preference Test
  • Basic Protocol 6: Reciprocal Interaction
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1: Marble Burying

  • Mice (at least 6 weeks of age)
  • 70% ethanol (for cleaning)
  • Clean standard polycarbonate mouse cage, 29.75 × 61.5 × 74 inches high (76 × 156 × 188 cm high)
  • Shaved aspen bedding
  • 24 marbles (5/8 inch; 1.58 cm in diameter)
  • Clear acrylic ceiling (sturdy clear acrylic sheet with ventilation holes to keep mice in the cage during the recording session)
  • Paper towel (for cleaning)
  • Camera (Microsoft LifeCam HD‐6000 720p HD Webcam) and mounting tripod
  • Ethovision XT11 software (for videotracking and data collection)
  • Light meter (used in measuring lighting intensity of the testing room)

Basic Protocol 2: T‐maze Spontaneous Alternation

  • Mice (at least 6 weeks of age)
  • 70% ethanol (for cleaning)
  • T‐maze (composed of three 30 × 10 cm arms joined by a 10 × 10 cm center)
  • Physical barrier to prevent arm entry (custom‐made guillotine doors, or we have used a square‐shaped water bottle)
  • Paper towels
  • Timer
  • Recording camera and computer
  • Light meter (for measuring lighting intensity of the testing room)
  • Ethovision XT11 (optional)

Basic Protocol 3: Neonatal Ultrasonic Vocalization

  • Mouse pups (postnatal day 4, 6, or 8)
  • Chlorine dioxide‐based sterilant (e.g., Clidox; for cleaning)
  • Sound attenuating chamber (to allow recording without interference of ambient noise)
  • Electric heating pad (very important when recording neonatal vocalization; helps maintain body temperature during 5‐min recording session)
  • 500‐ml glass beaker
  • Thermometer
  • Noldus UltraVox XT system for recording and data analysis (system includes a digital microphone able to capture the ultrasonic signal up to 125 kHz)
  • Paper towels (for cleaning)
NOTE: For easy transport, a thick walled Styrofoam box could be used as the sound attenuating chamber to keep out ambient noise. Alternatively, any box with thick walls can be lined with acoustic material for sound proofing effect. When installing the microphone and a heating pad in the box, make sure to fill any gaps with high density foam strips to maximize sound proofing effect.

Basic Protocol 4: Olfactory Habituation Test

  • Mice (at least 6 weeks of age; if mice are presented with opposite sex urine as one of the olfactory cues, use 9‐week‐old mice to avoid variability in timing of sexual maturation)
  • Olfactory scent samples:
    • Almond extract (McCormick)
    • Banana extract (McCormick)
    • Pooled urine from age‐ and gender‐matched female and male mice (for urine collection, refer to protocol 5Support Protocol)
  • Distilled water
  • Clean, housing cage setup, including standard polycarbonate mouse cage, 29.75 × 61.5 × 74 in high (75.6 × 156 × 188 cm), lined with corn cob bedding, wire top, and water bottle
  • Camera (Microsoft LifeCam HD‐6000 720p HD Webcam) and mounting tripod
  • Ethovision XT11 software (for data collection; Noldus Information Technologies)
  • Small plastic weighing boats (4.1 × 4.1 × 0.8 cm; VWR, cat. no. 89106‐764)
  • Unscented double‐sided Scor‐Tape, 1/8 in wide (0.32 cm; Scor‐Pal; Scotch tape products should be avoided as most of their tapes come with honey‐like scent)
  • Clean filter paper
  • Various sized pipets (20, 200, and 1000 µl), and tips

Support Protocol 1: Collection and Storage of Urine Samples

  • 10 male and 10 female mice (strain and age should match those of mice to be used for the olfactory habituation test)
  • 1.75‐ml Eppendorf tubes
  • Non‐toxic marker or ear tag

Basic Protocol 5: Three‐Chambered Social Preference Test

  • Mice at 7 weeks of age
  • Two age‐ and sex‐matched mice of the same strain (i.e., novel mice; keep novel mice in a different housing facility than test mice to ensure all aspects of social approach, e.g., tactical, olfactory, vocalization, stay novel)
  • 70% ethanol (for cleaning)
  • Three‐chambered Plexiglas box
  • Two metal restraining cups, 11 cm high, 10.5 cm diameter solid bottom, and stainless steel bars spaced at 1‐cm intervals (cups are designed to allow non‐aggressive tactical interaction and olfactory communication)
  • Ethovision XT videotracking system

Basic Protocol 6: Reciprocal Interaction

  • Mice at 7 weeks of age
  • Age‐ and sex‐matched mice (i.e., novel mice; keep novel mice in a different housing facility than test mice to ensure all aspects of social approach, e.g., tactical, olfactory, vocalization, are novel)
  • 70% ethanol (for cleaning)
  • Non‐toxic marker (such as acrylic marker) for animal identification
  • Clean housing cage setup including standard polycarbonate mouse cage, 29.75 × 61.5 × 74 in high (75.6 × 156 × 188 cm), lined with corn cob bedding, wire top, and water bottle
  • Clear acrylic ceiling (sturdy clear acrylic sheet with ventilation holes to keep mice in cages during recording session)
  • Camera (Microsoft LifeCam HD‐6000 720p HD Webcam) and mounting tripod
  • Ethovision XT11 software for data collection
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Allen, J. L., Oberdorster, G., Morris‐Schaffer, K., Wong, C., Klocke, C., Sobolewski, M., … Cory‐Slechta, D. A. (2015). Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: Parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology, doi: 10.1016/j.neuro.2015.12.014.
  Amodeo, D. A., Jones, J. H., Sweeney, J. A., & Ragozzino, M. E. (2012). Differences in BTBR T+tf/J and C57BL/6J mice on probabilistic reversal learning and stereotyped behaviors. Behavioural Brain Research, 227, 64–72. doi: 10.1016/j.bbr.2011.10.032.
  Andersen, S. L., Greene‐Colozzi, E. A., & Sonntag, K. C. A. (2010). A novel, multiple symptom model of obsessive‐compulsive‐like behaviors in animals. Biological Psychiatry, 68, 741–747. doi: 10.1016/j.biopsych.2010.05.011.
  Angoa‐Pérez, M., Kane, M. J., Briggs, D. I., Francescutti, D. M., & Kuhn, D. M. (2013). Marble burying and nestlet shredding as tests of repetitive, compulsive‐like behaviors in mice. Journal of Visualized Experiments, 82, e50978. doi: 10.3791/50978.
  Arakawa, H., Blanchard, D. C., Arakawa, K., Dunlap, C., & Blanchard, R. J. (2008). Scent marking behavior as an odorant communication in mice. Neuroscience and Biobehavioral Reviews, 32, 1236–1248. doi: 10.1016/j.neubiorev.2008.05.012.
  Bennett, M. R., & Lagopoulos, J. (2015). Neurodevelopmental sequelae associated with gray and white matter changes and their cellular basis: A comparison between autism spectrum disorder, ADHD and dyslexia. International Journal of Developmental Neuroscience, 46, 132–143. doi: 10.1016/j.ijdevneu.2015.02.007.
  Beynon, R. J., & Hurst, J. L. (2004). Urinary proteins and the modulation of chemical scents in mice and rats. Peptides, 25, 1553–1563. doi: 10.1016/j.peptides.2003.12.025.
  Blackmon, K., Ben‐Avi, E., Wang, X., Pardoe, H. R., Di Martino, A., Halgren, E., … Kuznieckya, R. (2016). Periventricular white matter abnormalities and restricted repetitive behavior in autism spectrum disorder. NeuroImage Clinical, 10, 36–45. doi: 10.1016/j.nicl.2015.10.017.
  Blatt, G. J. (2012). The neuropathology of autism. Scientifica, 2012, Article ID 703675. doi: 10.6064/2012/703675.
  Branchi, I., Santucci, D., & Alleva, E. (2006). Analysis of ultrasonic vocalizations emitted by infant rodents. Current Protocols in Toxicology, 30, 13.12.1–13.12.14. doi: 10.1002/0471140856.tx1312s30.
  Branchi, I., Santucci, D., Vitale, A., & Alleva, E. (1998). Ultrasonic vocalizations by infant laboratory mice: A preliminary spectrographic characterization under different conditions. Developmental Psychobiology, 33, 249–256. doi: 10.1002/(SICI)1098‐2302(199811)33:3<249::AID‐DEV5>3.0.CO;2‐R.
  Brudzynski, S. M., Kehoe, P., & Callahan, M. (1999). Sonographic structure of isolation‐induced ultrasonic calls of rat pups. Developmental Psychobiology, 34, 195–204. doi: 10.1002/(SICI)1098‐2302(199904)34:3%3c195::AID‐DEV4%3e3.0.CO;2‐S.
  Choi, G. B., Yim, Y. S., Wong, H., Kim, S., Kim, H., Kim, S. V., … Huh, J. R. (2016). The maternal interleukin‐17a pathway in mice promotes autismlike phenotypes in offspring. Science, 351, 933–939. doi: 10.1126/science.aad0314.
  Christensen, D. L., Baio, J., Van Naarden Braun, K., Bilder, D., Charles, J., Constantino, J. N., … Yeargin‐Allsopp, M. (2016). Prevalence and characteristics of autism spectrum disorder among children aged 8 years ‐ autism and developmental disabilities monitoring network, 11 sites, United States, 2012. Morbidity and Mortality Weekly Report Surveillance Summaries, 65, 1–23. doi: 10.15585/mmwr.ss6503a1.
  Crawley, J. N. (2012). Translational animal models of autism and neurodevelopmental disorders. Dialogues in Clinical Neuroscience, 14, 293–305.
  Crippa, A., Del Vecchio, G., Busti Ceccarelli, S., Nobile, M., Arrigoni, F., & Brambilla, P. (2016). Cortico‐Cerebellar connectivity in autism spectrum disorder: What do we know so far? Frontiers in Psychiatry, 7, 1–7. doi: 10.3389/fpsyt.2016.00020.
  D'Agostino, G., Russo, R., Avagliano, C., Cristiano, C., Meli, R., & Calignano, A. (2012). Palmitoylethanolamide protects against the amyloid‐β;25‐35‐induced learning and memory impairment in mice, an experimental model of Alzheimer disease. Neuropsychopharmacology, 37, 1784–1792. doi: 10.1038/npp.2012.25.
  De Felice, A., Scattoni, M. L., Ricceri, L., & Calamandrei, G. (2015). Prenatal exposure to a common organophosphate insecticide delays motor development in a mouse model of idiopathic autism. PLoS One, 10, e0121663. doi: 10.1371/journal.pone.0121663.
  Deacon, R. M. (2006). Digging and marble burying in mice: Simple methods for in vivo identification of biological impacts. Nature Protocols, 1, 122–124. doi: 10.1038/nprot.2006.20.
  Deacon, R. M., & Rawlins, J. N. (2006). T‐maze alternation in the rodent. Nature Protocols, 1, 7–12. doi: 10.1038/nprot.2006.2.
  Ey, E., Torquet, N., Le Sourd, A. M., Leblond, C. S., Boeckers, T. M., Faure, P., & Bourgeron, T. (2013). The Autism ProSAP1/Shank2 mouse model displays quantitative and structural abnormalities in ultrasonic vocalisations. Behavioural Brain Research, 256, 677–689. doi: 10.1016/j.bbr.2013.08.031.
  Favre, M. R., La Mendola, D., Meystre, J., Christodoulou, D., Cochrane, M. J., Markram, H., & Markram, K. (2015). Predictable enriched environment prevents development of hyperemotionality in the VPA rat model of autism. Frontiers in Neuroscience, 9, 1–14. doi: 10.3389/fnins.2015.00127.
  Fischer, J., & Hammerschmidt, K. (2011). Ultrasonic vocalizations in mouse models for speech and socio‐cognitive disorders: Insights into the evolution of vocal communication. Genes, Brain, and Behavior, 10, 17–27. doi: 10.1111/j.1601‐183X.2010.00610.x.
  Hampson, D. R., & Blatt, G. J. (2015). Autism spectrum disorders and neuropathology of the cerebellum. Frontiers in Neuroscience, 9, 1–16. doi: 10.3389/fnins.2015.00420.
  Han, S., Tai, C., Westenbroek, R. E., Yu, F. H., Cheah, C. S., Potter, G. B., … Catterall, W. A. (2012). Autistic‐like behavior in Scn1a+/− mice and rescue by enhanced GABA‐mediated neurotransmission. Nature, 489, 385–390. doi: 10.1038/nature11356.
  Hennel, S., Coates, C., Symeonides, C., Gulenc, A., Smith, L., Price, A. M., & Hiscock, H. (2016). Diagnosing autism: Contemporaneous surveys of parent needs and paediatric practice. Journal of Paediatrics and Child Health, 52, 5016–5511. doi: 10.1111/jpc.13157.
  Ju, A., Hammerschmidt, K., Tantra, M., Krueger, D., Brose, N., & Ehrenreich, H. (2014). Juvenile manifestation of ultrasound communication deficits in the neuroligin‐4 null mutant mouse model of autism. Behavioural Brain Research, 270, 159–164. doi: 10.1016/j.bbr.2014.05.019.
  Kalkbrenner, A. E., Schmidt, R. J., & Penlesky, A. C. (2014). Environmental chemical exposures and autism spectrum disorders: A review of the epidemiological evidence. Current Problems in Pediatric and Adolescent Health Care, 44, 277–318. doi: 10.1016/j.cppeds.2014.06.001.
  Kas, M. J., Glennon, J. C., Buitelaar, J., Ey, E., Biemans, B., Crawley, J., … Steckler, T. (2014). Assessing behavioural and cognitive domains of autism spectrum disorders in rodents: Current status and future perspectives. Psychopharmacology, 231, 1125–1146. doi: 10.1007/s00213‐013‐3268‐5.
  Kazdoba, T. M., Leach, P. T., & Crawley, J. N. (2016). Behavioral phenotypes of genetic mouse models of autism. Genes, Brain, and Behavior, 15, 7–26. doi: 10.1111/gbb.12256.
  King, M., & Bearman, P. (2009). Diagnostic change and the increased prevalence of autism. International Journal of Epidemiology, 38, 1224–1234. doi: 10.1093/ije/dyp261.
  Kirsten, T. B., Chaves‐Kirsten, G. P., Chaible, L. M., Silva, A. C., Martins, D. O., Britto, L. R., … Bernardi, M. M. (2012). Hypoactivity of the central dopaminergic system and autistic‐like behavior induced by a single early prenatal exposure to lipopolysaccharide. Journal of Neuroscience Research, 90, 1903–1912. doi: 10.1002/jnr.23089.
  Lainiola, M., Procaccini, C., & Linden, A. M. (2014). MGluR3 knockout mice show a working memory defect and an enhanced response to MK‐801 in the T‐ and Y‐maze cognitive tests. Behavioural Brain Research, 266, 94–103. doi: 10.1016/j.bbr.2014.03.008.
  Lo Pumo, R., Bellia, M., Nicosia, A., Micale, V., & Drago, F. (2006), Long‐lasting neurotoxicity of prenatal benzene acute exposure in rats. Toxicology, 223, 227–234. doi: 10.1016/j.tox.2006.04.001.
  Michetti, C., Romano, E., Altabella, L., Caruso, A., Castelluccio, P., Bedse, G., … Scattoni, M. L. (2014). Mapping pathological phenotypes in reelin mutant mice. Frontiers in Pediatrics, 2, 95. doi: 10.3389/fped.2014.00095.
  Miller, J. R., & Engstrom, M. D. (2010). Stereotypic vocalizations in harvest mice (Reithrodontomys): Harmonic structure contains prominent and distinctive audible, ultrasonic, and non‐linear elements. The Journal of the Acoustical Society of America, 128, 1501–1510. doi: 10.1121/1.3455855.
  Moy, S. S., Riddick, N. V., Nikolova, V. D., Teng, B. L., Agster, K. L., Nonneman, R. J., … Bodfish, J. W. (2014). Repetitive behavior profile and supersensitivity to amphetamine in the C58/J mouse model of autism. Behavioural Brain Research, 259, 200–214. doi: 10.1016/j.bbr.2013.10.052.
  Nadler, J. J., Moy, S. S., Dold, G., Trang, D., Simmons, N., Perez, A., … Crawley, J. N. (2004). Automated apparatus for quantitation of social approach behaviors in mice. Genes, Brain, and Behavior, 3, 303–314. doi: 10.1111/j.1601‐183X.2004.00071.x.
  Naviaux, J. C., Schuchbauer, M. A., Li, K., Wang, L., Risbrough, V. B., Powell, S. B., & Naviaux, R. K. (2014). Reversal of autism‐like behaviors and metabolism in adult mice with single‐dose antipurinergic therapy. Translational Psychiatry, 4, e400. doi: 10.1038/tp.2014.33.
  Ornoy, A., Weinstein‐Fudim, L., & Ergaz, Z. (2015). Prenatal factors associated with autism spectrum disorder (ASD). Reproductive Toxicology, 56, 155–169. doi: 10.1016/j.reprotox.2015.05.007.
  Patterson, P. H. (2011). Maternal infection and immune involvement in autism. Trends in Molecular Medicine, 17, 389–394. doi: 10.1016/j.molmed.2011.03.001.
  Peng, Y., Liu, J., Tang, Y., Liu, J., Han, T., Han, S., … Long, J. (2014). High‐fat‐diet‐induced weight gain ameliorates bone loss without exacerbating AβPP processing and cognition in female APP/PS1 mice. Frontiers in Cellular Neuroscience, 8, 225. doi: 10.3389/fncel.2014.00225.
  Romano, E., Michetti, C., Caruso, A., Laviola, G., & Scattoni, M. L. (2013). Characterization of neonatal vocal and motor repertoire of reelin mutant mice. PLoS One, 8, e64407. doi: 10.1371/journal.pone.0064407.
  Santini, E., Huynh, T. N., MacAskill, A. F., Carter, A. G., Pierre, P., Ruggero, D., … Klann, E. (2013). Exaggerated translation causes synaptic and behavioural aberrations associated with autism. Nature, 493, 411–415. doi: 10.1038/nature11782.
  Scattoni, M. L., Gandhy, S. U., Ricceri, L., & Crawley, J. N. (2008). Unusual repertoire of vocalizations in the BTBR T+tf/J mouse model of autism. PLoS One, 3, e3067. doi: 10.1371/journal.pone.0003067.
  Scattoni, M. L., Ricceri, L., & Crawley, J. (2011). Unusual repertoire of vocalizations in adult BTBR T+tf/J mice. Genes, Brain, and Behavior, 10, 44–56. doi: 10.1111/j.1601‐183X.2010.00623.x.
  Schwartzer, J. J., Careaga, M., Onore, C. E., Rushakoff, J. A., Berman, R. F., & Ashwood, P. (2013). Maternal immune activation and strain specific interactions in the development of autism‐like behaviors in mice. Translational Psychiatry, 3, e240. doi: 10.1038/tp.2013.16.
  Silverman, J. L., Pride, M. C., Hayes, J. E., Puhger, K. R., Butler‐Struben, H. M., Baker, S., & Crawley, J. N. (2015). GABAB receptor agonist R‐Baclofen reverses social deficits and reduces repetitive behavior in two mouse models of autism. Neuropsychopharmacology, 40, 2228–2239. doi: 10.1038/npp.2015.66.
  Silverman, J. L., Turner, S. M., Barkan, C. L., Tolu, S. S., Saxena, R., Hung, A. Y., … Crawley, J. N. (2011). Sociability and motor functions in Shank1 mutant mice. Brain Research, 1380, 120–137. doi: 10.1016/j.brainres.2010.09.026.
  Silverman, J. L., Yang, M., Lord, C., & Crawley, J. N. (2010). Behavioural phenotyping assays for mouse models of autism. Nature Reviews Neuroscience, 11, 490–502. doi: 10.1038/nrn2851.
  Stoner, R., Chow, M. L., Boyle, M. P., Sunkin, S. M., Mouton, P. R., Roy, S., … Courchesne, E. (2014). Patches of disorganization in the neocortex of children with autism. The New England Journal of Medicine, 370, 1209–1219. doi: 10.1056/NEJMoa1307491.
  Takeuchi, H., Yatsugi, S., & Yamaguchi, T. (2002). Effect of YM992, a novel antidepressant with selective serotonin re‐uptake inhibitory and 5‐HT 2A receptor antagonistic activity, on a marble‐burying behavior test as an obsessive‐compulsive disorder model. Japanese Journal of Pharmacology, 90, 197–200. doi: 10.1254/jjp.90.197.
  Terranova, M. L., & Laviola, G. (2005). Scoring of social interactions and play in mice during adolescence. Current Protocols in Toxicology, 26, 13.10.1–13.10.11. doi: 10.1002/0471140856.tx1310s26.
  Torre‐Ubieta, L., Won, H., Stein, J. L., & Geschwind, D. H (2016). Advancing the understanding of autism disease mechanisms through genetics. Nature Medicine, 116, 1477–1490. doi:10.1038/nm.4071.
  Turner, A. H., Greenspan, K. S., & van Erp, T. G. M. (2016). Pallidum and lateral ventricle volume enlargement in autism spectrum disorder. Psychiatry Research Neuroimaging, 252, 40–45. doi: 10.1016/j.pscychresns.2016.04.003.
  Varcin, K. J., & Nelson, C. A. (2016). A developmental neuroscience approach to the search for biomarkers in autism spectrum disorder. Current Opinion in Neurology, 29, 123–129. doi: 10.1097/WCO.0000000000000298.
  Vosshall, L. B. (2005). Social signals: The secret language of mice. Current Biology, 15, 255–257. doi: 10.1016/j.cub.2005.03.027.
  Warburton, V. L., Sales, G. D., & Milligan, S. R. (1989). The emission and elicitation of mouse ultrasonic vocalizations: The effects of age, sex and gonadal status. Physiology & Behavior, 45, 41–47. doi: 10.1016/0031‐9384(89)90164‐9.
  Wöhr, M., & Scattoni, M. L. (2013). Behavioural methods used in rodent models of autism spectrum disorders: Current standards and new developments. Behavioural Brain Research, 251, 5–17. doi: 10.1016/j.bbr.2013.05.047.
  Xue, R., Lei, S., Xia, Z. Y., Wu, Y., Meng, Q., Zhan, L., … Xia, Z. (2016). Selective inhibition of PTEN preserves ischaemic post‐conditioning cardioprotection in STZ‐induced Type 1 diabetic rats: Role of the PI3K/Akt and JAK2/STAT3 pathways. Clinical Science, 130, 377–392. doi: 10.1042/CS20150496.
  Yang, M., Abrams, D. N., Zhang, J. Y., Weber, M. D., Katz, A. M., Clarke, A. M., … Crawley, J. N. (2012). Low sociability in BTBR T+tf/J mice is independent of partner strain. Physiology & Behavior, 107, 649–662. doi: 10.1016/j.physbeh.2011.12.025.
  Yang, M., & Crawley, J. A. (2009). Simple behavioral assessment of mouse olfaction. Current Protocols in Neuroscience, 48, 8.24.1–8.24.12. doi: 10.1002/0471142301.ns0824s48.
  Zou, J., Wang, W., Pan, Y. W., Lu, S., & Xia, Z. (2015). Methods to measure olfactory behavior in mice. Current Protocols in Toxicology, 2015, 63, 11.18.1–11.18.21. doi: 10.1002/0471140856.tx1118s63.
PDF or HTML at Wiley Online Library