Application of Dynamic Light Scattering in Protein Crystallization

Ariane Proteau1, Rong Shi1, Miroslaw Cygler2

1 Department of Biochemistry, McGill University, Montreal, Quebec, Canada, 2 Biotechnology Research Institute, Montreal, Quebec, Canada
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 17.10
DOI:  10.1002/0471140864.ps1710s61
Online Posting Date:  August, 2010
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Success in determining the three‐dimensional structure of a macromolecule by X‐ray diffraction methods depends critically on the ability to obtain well ordered crystals of the macromolecule in question. Predisposition to crystallization correlates with the homogeneity of the molecules in solution. Dynamic light scattering (DLS) is particularly well suited for evaluating protein homogeneity under multiple conditions and at concentrations commensurate with crystallization conditions. This unit presents a typical protocol for DLS measurements of a protein sample, and describes approaches to improve protein homogeneity in solution. Curr. Protoc. Protein Sci. 61:17.10.1‐17.10.9. © 2010 by John Wiley & Sons, Inc.

Keywords: dynamic light scattering; crystallization of proteins; crystallography

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: DLS Measurement of Protein Samples
  • Basic Protocol 2: DLS to Optimize Protein Solution Behavior for Crystallization
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: DLS Measurement of Protein Samples

  • Protein solution at appropriate concentration (see annotation to step 1)
  • 0.2‐ to 0.45 µm nitrocellulose filter disc (Whatman)
  • Refrigerated centrifuge
  • 96‐ or 384‐well flat‐bottom plastic plate (Thermo Scientific, part no. 95040000)
  • DynaPro plate reader with Dynamics software (Wyatt Technology Corporation;

Basic Protocol 2: DLS to Optimize Protein Solution Behavior for Crystallization

  • Protein sample, 1 to 2 mg/ml
  • Concentrated solutions of selected buffers and additives (Table 17.10.3), if possible, 10‐fold more concentrated than required for the experiments
  • Protein concentrator (e.g., Amicon centrifugal filter unit Ultra‐4)
  • 96‐ or 384‐well microtiter plate
  • Additional reagents and equipment for measuring DLS ( protocol 1)
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Baldwin, E.T., Crumley, K.V., and Carter, C.W. 1986. Practical, rapid screening of protein crystallization conditions by dynamic light scattering. Biophys. J. 49:47‐48.
   Bergfors, T. 1999. Dynamic light scattering. In Protein Crystallization: Techniques, Strategies, and Tips. A Laboratory Manual. (T. Bergfors, ed.) pp. 29‐38. International University Line, La Jolla, Calif.
   Borgstahl, G.E. 2007. How to use dynamic light scattering to improve the likelihood of growing macromolecular crystals. Methods Mol. Biol. 363:109‐29.
   Claes, P., Dunford, M., Kennedy, A., and Vardy, P. 1992. An on‐line dynamic light‐scattering instrument for macromolecular characterization. In Laser Light Scattering in Biochemistry (S.E. Harding, D.B. Sattelle, and V.A. Bloomfield, eds.) pp. 66‐76. Royal Society for Chemistry, Cambridge, U.K.
   D'Arcy, A. 1994. Crystallizing proteins—a rational approach? Acta Crystallogr. D Biol. Crystallogr. 50:469‐471.
   Ferre‐D'Amare, A.R. and Burley, S.K. 1994. Use of dynamic light scattering to assess crystallizability of macromolecules and macromolecular assemblies. Structure 2:357‐359.
   Goon, S., Kelly, J.F., Logan, S.M., Ewings, C.P., and Guerry, P. 2003. Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene. Mol. Microbiol. 50:659‐671.
   Niesen, F.H., Koch, A., Lenski, U., Harttig, U., Roske, Y., Heinemann, U., and Hofmann, K.P. 2008. An approach to quality management in structural biology: Biophysical selection of proteins for successful crystallization. J. Struct. Biol. 162:451‐459.
   Price, W.N., Chen, Y., Handelman, S.K., Neely, H., Manor, P., Karlin, R., Nair, R., Liu, J., Baran, M., Everett, J., Tong, S.N., Forouhar, F., Swaminathan, S.S., Acton, T., Xiao, R., Luft, J.R., Lauricella, A., DeTitta, G.T., Rost, B., Montelione, G.T., and Hunt, J.F. 2009. Understanding the physical properties that control protein crystallization by analysis of large‐scale experimental data. Nat. Biotechnol. 27:51‐57.
   Rangarajan, E.S., Li, Y., Ajamian, E., Iannuzzi, P., Kernaghan, S.D., Fraser, M.E., Cygler, M., and Matte, A. 2005. Crystallographic trapping of the glutamyl‐CoA thioester intermediate of family I CoA transferases. J. Biol. Chem. 280:42919‐42928.
   Rangarajan, E.S., Asinas, A., Proteau, A., Munger, C., Baardsnes, J., Iannuzzi, P., Matte, A., and Cygler, M. 2008. Structure of [NiFe] hydrogenase maturation protein HypE from Escherichia coli and its interaction with HypF. J. Bacteriol. 190:1447‐1458.
   Shi, R., Villarroya, V., Ruiz‐Partida, R., Li, Y., Proteau, A., Prado, S., Moukadiri, I., Benitez‐Paez, A., Lomas, R., Wagner, J., Matte, A., Velazquez‐Campoy, A., Armengod, M.E., and Cygler, M. 2009. Structural flexibility and mutational analysis of E. coli MnmG (GidA), a highly‐conserved tRNA‐modifying enzyme. J. Bacteriol. 191:7614‐7619.
   Yoshida, H., Hensgens, C.M., van der Laan, J.M., Sutherland, J.D., Hart, D.J., and Dijkstra, B.W. 2005. An approach to prevent aggregation during the purification and crystallization of wild type acyl coenzyme A: Isopenicillin N acyltransferase from Penicillium chrysogenum. Protein Expr. Purif. 41:61‐67.
   Zulauf, M. and D'Arcy, A. 1992. Light scattering of proteins as a criterion for crystallization. J. Crys. Growth 122:102‐106.
PDF or HTML at Wiley Online Library