N‐Terminal Methionine Processing

Paul T. Wingfield1

1 Protein Expression Laboratory, NIAMS/NIH, Bethesda, Maryland
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 6.14
DOI:  10.1002/cpps.29
Online Posting Date:  April, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Protein synthesis is initiated by methionine in eukaryotes and by formylmethionine in prokaryotes. N‐terminal methionine can be co‐translationally cleaved by the enzyme methionine aminopeptidase (MAP). When recombinant proteins are expressed in bacterial and mammalian expression systems, there is a simple universal rule that predicts whether the initiating methionine will be processed by MAP based on the size of the residue adjacent (penultimate) to the N‐methionine. In general, if the side chains of the penultimate residues have a radius of gyration of 1.29 Å or less, methionine is cleaved. © 2017 by John Wiley & Sons, Inc.

Keywords: exopeptidase activity; methionine aminopepidases; N‐terminal methionine; protein synthesis

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Background
  • Specificity
  • Recombinant Protein Expression
  • Acknowledgements
  • Literature Cited
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Arnesen, T. (2011). Towards a functional understanding of protein N‐terminal acetylation. PLoS Biology, 95, e1001074. doi: 10.1371/journal.pbio.1001074
  Bonissone, S., Gupta, N., Romine, M., Bradshaw, R. A., & Pevzner, P. A. (2013). N‐terminal protein processing: A comparative proteogenomic analysis. Molecular & Cellular Proteomics, 12, 14–18. doi: 10.1074/mcp.M112.019075
  Frottin, F., Martinez, A., Peynot, P., Mitra, S., Holz, R. C., Giglione, C., … Meinnel, T. (2006). The proteomics of N‐terminal methionine cleavage. Molecular & Cellular Proteomics, 5, 2336–2349. doi: 10.1074/mcp.M600225‐MCP200
  Helgren, T. R., Wangtrakuldee, P., Staker, B. L., & Hagan, T. J. (2016). Advances in bacterial methionine aminopeptidase inhibition. Current Topics in Medicinal Chemistry. 16, 397–414. doi: 10.2174/1568026615666150813145410
  Liao, Y.‐D., Jeng, J.‐C., Wang, C.‐F., Wang, S.‐C., & Chang, S.‐T. (2004). Removal of N‐terminal methionine from recombinant proteins by engineered E. coli methionine aminopeptidase. Protein Science, 13, 1802–1810. doi: 10.1110/ps.04679104
  Liu, S., Widom, J., Kemp, C. W., Crews, C. M., & Clardy, J. (1998). Structure of human methionine aminopeptidase‐2 complexed with fumagillin. Science, 282, 1324–1327. doi: 10.1126/science.282.5392.1324
  Lowther, W. T., Orville, A. M., Madden, D. T., Lim, S., Rich, D. H., & Matthews, B. W. (1999). Escherichia coli methionine aminopeptidase: Implications of crystallographic analyses of the native, mutant, and inhibited enzymes for the mechanism of catalysis. Biochemistry, 38, 7678–7688. doi: 10.1021/bi990684r
  Miller, C. G., Strauch, K. L., Kukral, A. M., Miller, J. L., Wingfield, P. T., Mazzei, G., … Movva, N. R. (1987). A N‐terminal methionine‐specific peptidase in Salmonella typhimurium. Proceedings of the National Academy of Sciences of the United States of America, 84, 2718–2722. doi: 10.1073/pnas.84.9.2718
  Rose, K., Regamey, P.‐O., Anderegg, R., Wells, T. N. C., & Proudfoot, A. E. I. (1992). Human interleukin‐5 expressed in Escherichia coli has N‐terminal modifications. The Biochemical Journal, 286, 825–828. doi: 10.1042/bj2860825
  Schechter, I., & Berger A. (1967). On the size of the active site in proteases. I. Papain. Biochemical and Biophysical Research Communications, 27, 157–162.
  Sherman, F., Stewart, J. W., & Tsunawa, S. (1985). Methionine or not methionine at the beginning of a protein. BioEssays, 3, 27–31. doi: 10.1002/bies.950030108
  Van Valkenburgh, H. A., & Kahn, R. A. (2002). Coexpression of proteins with methionine aminopeptidase and/or N‐myristoyltransferase in Escherichia coli to increase acylation and homogeneity of protein preparations. Methods in Enzymology, 344, 186–193. doi: 10.1016/S0076‐6879(02)44715‐5
  Wang, Z.‐Y., Shimonaga, M., Muraoka, Y., Kobayashi, M., & Nozawa, T. (2001). Methionine oxidation and its effect on the stability of a reconstitute subunit of the light‐harvesting complex from Rhodospirillum rubrum. European Journal of Biochemistry, 268, 3375–3382. doi: 10.1046/j.1432‐1327.2001.02234.x
  Wingfield, P. T., Graber, P., Rose, K., Simona, M. G., & Hughes, G. J. (1987). Chromatofocusing of N‐terminally processed forms of proteins. Isolation and characterization of two forms of interleukin‐1β and bovine growth hormone. Journal of Chromatography, 387, 291–300. doi: 10.1016/S0021‐9673(01)94532‐7
  Xiao, Q., Zhang, F., Nacev, B. A., Liu, J. O., & Pei, D. (2010). Protein N‐terminal processing: Substrate specificity of Escherichia coli and human methionine aminopeptidases. Biochemistry, 49, 5588–5599. doi: 10.1021/bi1005464
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library