Overview of Monoamine Transporters

Shaili Aggarwal1, Ole V. Mortensen1

1 Department of Pharmacology and Physiology, Drexel University College of Medicine, Pennsylvania
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 12.16
DOI:  10.1002/cpph.32
Online Posting Date:  December, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


The dopamine (DAT), serotonin (SERT), and norepinephrine (NET) transporters, which are collectively referred to as monoamine transporters (MATs), play significant roles in regulating the neuronal response to these neurotransmitters. MATs terminate the action of these neurotransmitters by translocating them from the synaptic space into the presynaptic neurons. These three transmitters are responsible for controlling a number of physiological, emotional, and behavioral functions, with their transporters being the site of action of drugs employed for the treatment of a variety of conditions, including depression, anxiety, ADHD, schizophrenia, and psychostimulant abuse. Provided in this unit is information on the localization and regulation of MATs and the structural components of these proteins most responsible for the translocation process. Also included is a brief description of the evolution of ligands that interact with these transporters, as well as current theories concerning the pharmacological effects of substances that interact with these sites, including the molecular mechanisms of action of uptake inhibitors and allosteric modulators. Data relating to the presence, structure, and functions of allosteric modulators are included as well. The aim of this review is to provide background information on MATs to those who are new to this field, with a focus on the therapeutic potential of compounds that interact with these substrate transport sites. © 2017 by John Wiley & Sons, Inc.

Keywords: allosteric modulators; dopamine; inhibitors; norepinephrine; releasers; serotonin; substrates; transporters

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Localization
  • Structural Insights and Transport Mechanism
  • Pharmacology
  • Regulation and Trafficking
  • Conclusions
  • Acknowledgements
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Andersen, J., Ladefoged, L. K., Kristensen, T. N., Munro, L., Grouleff, J., Stuhr‐Hansen, N., … Stromgaard, K. (2016). Interrogating the molecular basis for substrate recognition in serotonin and dopamine transporters with high‐affinity substrate‐based bivalent ligands. ACS Chemical Neuroscience, 7(10), 1406–1417. doi: 10.1021/acschemneuro.6b00164.
  Andersen, J., Ringsted, K. B., Bang‐Andersen, B., Stromgaard, K., & Kristensen, A. S. (2015). Binding site residues control inhibitor selectivity in the human norepinephrine transporter but not in the human dopamine transporter. Scientific Reports, 5, 15650. doi: 10.1038/srep15650.
  Baumann, M. H., & Volkow, N. D. (2016). Abuse of new psychoactive substances: Threats and solutions. Neuropsychopharmacology, 41(3), 663–665. doi: 10.1038/npp.2015.260.
  Bermingham, D. P., & Blakely, R. D. (2016). Kinase‐dependent regulation of monoamine neurotransmitter transporters. Pharmacological Reviews, 68(4), 888–953. doi: 10.1124/pr.115.012260.
  Carroll, F. I., Blough, B. E., Mascarella, S. W., Navarro, H. A., Eaton, J. B., Lukas, R. J., & Damaj, M. I. (2010). Synthesis and biological evaluation of bupropion analogues as potential pharmacotherapies for smoking cessation. Journal of Medicinal Chemistry, 53(5), 2204–2214. doi: 10.1021/jm9017465.
  Carroll, F. I., Blough, B. E., Mascarella, S. W., Navarro, H. A., Lukas, R. J., & Damaj, M. I. (2014). Bupropion and bupropion analogs as treatments for CNS disorders. Advances in Pharmacology, 69, 177–216. doi: 10.1016/B978‐0‐12‐420118‐7.00005‐6.
  Coleman, J. A., Green, E. M., & Gouaux, E. (2016). X‐ray structures and mechanism of the human serotonin transporter. Nature, 532(7599), 334–339. doi: 10.1038/nature17629.
  Hersch, S. M., Yi, H., Heilman, C. J., Edwards, R. H., & Levey, A. I. (1997). Subcellular localization and molecular topology of the dopamine transporter in the striatum and substantia nigra. The Journal of Comparative Neurology, 388(2), 211–227. doi: 10.1002/(SICI)1096‐9861(19971117)388:2<211::AID‐CNE3>3.0.CO;2‐4.
  Howell, L. L., & Negus, S. S. (2014). Monoamine transporter inhibitors and substrates as treatments for stimulant abuse. Advances in Pharmacology, 69, 129–176. doi: 10.1016/B978‐0‐12‐420118‐7.00004‐4.
  Jacobsen, J. P., Plenge, P., Sachs, B. D., Pehrson, A. L., Cajina, M., Du, Y., … Caron, M. G. (2014). The interaction of escitalopram and R‐citalopram at the human serotonin transporter investigated in the mouse. Psychopharmacology, 231(23), 4527–4540. doi: 10.1007/s00213‐014‐3595‐1.
  Kilty, J. E., Lorang, D., & Amara, S. G. (1991). Cloning and expression of a cocaine‐sensitive rat dopamine transporter. Science, 254(5031), 578–579. doi: 10.1126/science.1948035.
  Koldso, H., Grouleff, J., & Schiott, B. (2015). Insights to ligand binding to the monoamine transporters‐from homology modeling to LeuBAT and dDAT. Frontiers in Pharmacology, 6, 208. doi: 10.3389/fphar.2015.00208.
  Kortagere, S., Fontana, A. C., Rose, D. R., & Mortensen, O. V. (2013). Identification of an allosteric modulator of the serotonin transporter with novel mechanism of action. Neuropharmacology, 72, 282–290. doi: 10.1016/j.neuropharm.2013.04.026.
  Kristensen, A. S., Andersen, J., Jorgensen, T. N., Sorensen, L., Eriksen, J., Loland, C. J., … Gether, U. (2011). SLC6 neurotransmitter transporters: Structure, function, and regulation. Pharmacological Reviews, 63(3), 585–640. doi: 10.1124/pr.108.000869.
  Lin, Z., Canales, J. J., Bjorgvinsson, T., Thomsen, M., Qu, H., Liu, Q. R., … Caine, S. B. (2011). Monoamine transporters: Vulnerable and vital doorkeepers. Progress in Molecular Biology and Translational Science, 98, 1–46. doi: 10.1016/B978‐0‐12‐385506‐0.00001‐6.
  Loland, C. J. (2015). The use of LeuT as a model in elucidating binding sites for substrates and inhibitors in neurotransmitter transporters. Biochimica et Biophysica Acta, 1850(3), 500–510. doi: 10.1016/j.bbagen.2014.04.011.
  Manepalli, S., Surratt, C. K., Madura, J. D., & Nolan, T. L. (2012). Monoamine transporter structure, function, dynamics, and drug discovery: A computational perspective. The AAPS Journal, 14(4), 820–831. doi: 10.1208/s12248‐012‐9391‐0.
  Mereu, M., Chun, L. E., Prisinzano, T. E., Newman, A. H., Katz, J. L., & Tanda, G. (2017). The unique psychostimulant profile of (±)‐modafinil: Investigation of behavioral and neurochemical effects in mice. The European Journal of Neuroscience, 45(1), 167–174. doi: 10.1111/ejn.13376.
  Miner, L. H., Schroeter, S., Blakely, R. D., & Sesack, S. R. (2003). Ultrastructural localization of the norepinephrine transporter in superficial and deep layers of the rat prelimbic prefrontal cortex and its spatial relationship to probable dopamine terminals. The Journal of Comparative Neurology, 466(4), 478–494. doi: 10.1002/cne.10898.
  Miranda, M., Dionne, K. R., Sorkina, T., & Sorkin, A. (2007). Three ubiquitin conjugation sites in the amino terminus of the dopamine transporter mediate protein kinase C–dependent endocytosis of the transporter. Molecular Biology of the Cell, 18(1), 313–323. doi: 10.1091/mbc.E06‐08‐0704.
  Miranda, M., Wu, C. C., Sorkina, T., Korstjens, D. R., & Sorkin, A. (2005). Enhanced ubiquitylation and accelerated degradation of the dopamine transporter mediated by protein kinase C. Journal of Biological Chemistry, 280(42), 35617–35624. doi: 10.1074/jbc.M506618200.
  Mortensen, O. V., Larsen, M. B., & Amara, S. (2017). MAP kinase phosphatase 3 (MKP3) preserves norepinephrine transporter activity by modulating ERK1/2 kinase‐mediated gene expression. Frontiers in Cellular Neuroscience, 11, 253. doi: 10.3389/fncel.2017.00253.
  Mortensen, O. V., & Kortagere, S. (2015). Designing modulators of monoamine transporters using virtual screening techniques. Frontiers in Pharmacology, 6, 223. doi: 10.3389/fphar.2015.00223.
  Mortensen, O. V., Larsen, M. B., Prasad, B. M., & Amara, S. G. (2008). Genetic complementation screen identifies a mitogen‐activated protein kinase phosphatase, MKP3, as a regulator of dopamine transporter trafficking. Molecular Biology of the Cell, 19(7), 2818. doi: 10.1091/mbc.E07‐09‐0980.
  Negus, S. S., & Henningfield, J. (2015). Agonist medications for the treatment of cocaine use disorder. Neuropsychopharmacology, 40(8), 1815–1825. doi: 10.1038/npp.2014.322.
  Paczkowski, F. A., Sharpe, I. A., Dutertre, S., & Lewis, R. J. (2007). chi‐Conotoxin and tricyclic antidepressant interactions at the norepinephrine transporter define a new transporter model. Journal of Biological Chemistry, 282(24), 17837–17844. doi: 10.1074/jbc.M610813200.
  Penmatsa, A., Wang, K. H., & Gouaux, E. (2013). X‐ray structure of dopamine transporter elucidates antidepressant mechanism. Nature, 503(7474), 85–90. doi: 10.1038/nature12533.
  Penmatsa, A., Wang, K. H., & Gouaux, E. (2015). X‐ray structures of Drosophila dopamine transporter in complex with nisoxetine and reboxetine. Nature Structural & Molecular Biology, 22(6), 506–508. doi: 10.1038/nsmb.3029.
  Plenge, P., Shi, L., Beuming, T., Te, J., Newman, A. H., Weinstein, H., … Loland, C. J. (2012). Steric hindrance mutagenesis in the conserved extracellular vestibule impedes allosteric binding of antidepressants to the serotonin transporter. Journal of Biological Chemistry, 287(47), 39316–39326. doi: 10.1074/jbc.M112.371765.
  Quick, M., Winther, A. M., Shi, L., Nissen, P., Weinstein, H., & Javitch, J. A. (2009). Binding of an octylglucoside detergent molecule in the second substrate (S2) site of LeuT establishes an inhibitor‐bound conformation. Proceedings of the National Academy of Sciences of the United States of America, 106(14), 5563–5568. doi: 10.1073/pnas.0811322106.
  Ramamoorthy, S., Shippenberg, T. S., & Jayanthi, L. D. (2011). Regulation of monoamine transporters: Role of transporter phosphorylation. Pharmacology & Therapeutics, 129(2), 220–238. doi: 10.1016/j.pharmthera.2010.09.009.
  Reith, M. E., Blough, B. E., Hong, W. C., Jones, K. T., Schmitt, K. C., Baumann, M. H., … Katz, J. L. (2015). Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter. Drug and Alcohol Dependence, 147, 1–19. doi: 10.1016/j.drugalcdep.2014.12.005.
  Rothman, R. B., Ananthan, S., Partilla, J. S., Saini, S. K., Moukha‐Chafiq, O., Pathak, V., & Baumann, M. H. (2015). Studies of the biogenic amine transporters 15. Identification of novel allosteric dopamine transporter ligands with nanomolar potency. Journal of Pharmacology and Experimental Therapeutics, 353(3), 529–538. doi: 10.1124/jpet.114.222299.
  Rothman, R. B., Partilla, J. S., Baumann, M. H., Lightfoot‐Siordia, C., & Blough, B. E. (2012). Studies of the biogenic amine transporters. 14. Identification of low‐efficacy "partial" substrates for the biogenic amine transporters. Journal of Pharmacology and Experimental Therapeutics, 341(1), 251–262. doi: 10.1124/jpet.111.188946.
  Rothman, R. B., Dersch, C. M., Ananthan, S., & Partilla, J. S. (2009). Studies of the biogenic amine transporters. 13. Identification of "agonist" and "antagonist" allosteric modulators of amphetamine‐induced dopamine release. The Journal of Pharmacology and Experimental Therapeutics, 329(2), 718–728. doi: 10.1124/jpet.108.149088.
  Rudnick, G., Kramer, R., Blakely, R. D., Murphy, D. L., & Verrey, F. (2014). The SLC6 transporters: Perspectives on structure, functions, regulation, and models for transporter dysfunction. Pflugers Archive European Journal of Physiology, 466(1), 25–42. doi: 10.1007/s00424‐013‐1410‐1.
  Schmitt, K. C., & Reith, M. E. (2011). The atypical stimulant and nootropic modafinil interacts with the dopamine transporter in a different manner than classical cocaine‐like inhibitors. Plos One, 6(10), e25790. doi: 10.1371/journal.pone.0025790.
  Schmitt, K. C., Rothman, R. B., & Reith, M. E. (2013). Nonclassical pharmacology of the dopamine transporter: Atypical inhibitors, allosteric modulators, and partial substrates. Journal of Pharmacology and Experimental Therapeutics, 346(1), 2–10. doi: 10.1124/jpet.111.191056.
  Shi, L., Quick, M., Zhao, Y., Weinstein, H., & Javitch, J. A. (2008). The mechanism of a neurotransmitter: Sodium symporter–inward release of Na+ and substrate is triggered by substrate in a second binding site. Molecular Cell, 30(6), 667–677. doi: 10.1016/j.molcel.2008.05.008.
  Singh, S. K., Piscitelli, C. L., Yamashita, A., & Gouaux, E. (2008). A competitive inhibitor traps LeuT in an open‐to‐out conformation. Science, 322(5908), 1655–1661. doi: 10.1126/science.1166777.
  Singh, S. K., Yamashita, A., & Gouaux, E. (2007). Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature, 448(7156), 952–956. doi: 10.1038/nature06038.
  Sitte, H. H., & Freissmuth, M. (2015). Amphetamines, new psychoactive drugs and the monoamine transporter cycle. Trends in Pharmacological Sciences, 36(1), 41–50. doi: 10.1016/j.tips.2014.11.006.
  Stahl, S. M., Lee‐Zimmerman, C., Cartwright, S., & Morrissette, D. A. (2013). Serotonergic drugs for depression and beyond. Current Drug Targets, 14(5), 578–585. doi: 10.2174/1389450111314050007.
  Torres, G. E., Gainetdnov, R. R., & Caron, M. G. (2003). Plasma membrane monoamine transporters: Structure, regulation and function. Nature Reviews Neuroscience, 4(1), 13–25. doi: 10.1038/nrn1008.
  Velázquez‐Sánchez, C., Ferragud, A., Murga, J., Cardá, M., & Canales, J. J. (2010). The high affinity dopamine uptake inhibitor, JHW 007, blocks cocaine‐induced reward, locomotor stimulation and sensitization. European Neuropsychopharmacology, 20(7), 501–508. doi: 10.1016/j.euroneuro.2010.03.005.
  Wang, H., Goehring, A., Wang, K. H., Penmatsa, A., Ressler, R., & Gouaux, E. (2013). Structural basis for action by diverse antidepressants on biogenic amine transporters. Nature, 503(7474), 141–145. doi: 10.1038/nature12648.
  Wang, K. H., Penmatsa, A., & Gouaux, E. (2015). Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature, 521(7552), 322–327. doi: 10.1038/nature14431.
  Yamashita, A., Singh, S. K., Kawate, T., Jin, Y., & Gouaux, E. (2005). Crystal structure of a bacterial homologue of Na+/Cl–dependent neurotransmitter transporters. Nature, 437(7056), 215–223. doi: 10.1038/nature03978.
  Zhang, H. Y., Bi, G. H., Yang, H. J., He, Y., Xue, G., Cao, J., … Xi, Z. X. (2017). The novel modafinil analog, JJC8‐016, as a potential cocaine abuse pharmacotherapeutic. Neuropsychopharmacology, 42(9), 1871–1883. doi: 10.1038/npp.2017.41.
  Zhou, Z., Zhen, J., Karpowich, N. K., Goetz, R. M., Law, C. J., Reith, M. E., & Wang, D. N. (2007). LeuT‐desipramine structure reveals how antidepressants block neurotransmitter reuptake. Science, 317(5843), 1390–1393. doi: 10.1126/science.1147614.
PDF or HTML at Wiley Online Library