All‐Optical Electrophysiology for Disease Modeling and Pharmacological Characterization of Neurons

Christopher A. Werley1, Ted Brookings1, Hansini Upadhyay1, Luis A. Williams1, Owen B. McManus1, Graham T. Dempsey1

1 Q‐State Biosciences, Cambridge, Massachusetts
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 11.20
DOI:  10.1002/cpph.25
Online Posting Date:  September, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

A key challenge for establishing a phenotypic screen for neuronal excitability is measurement of membrane potential changes with high throughput and accuracy. Most approaches for probing excitability rely on low‐throughput, invasive methods or lack cell‐specific information. These limitations stimulated the development of novel strategies for characterizing the electrical properties of cultured neurons. Among these was the development of optogenetic technologies (Optopatch) that allow for stimulation and recording of membrane voltage signals from cultured neurons with single‐cell sensitivity and millisecond temporal resolution. Neuronal activity is elicited using blue light activation of the channelrhodopsin variant ‘CheRiff’. Action potentials and synaptic signals are measured with ‘QuasAr’, a rapid and sensitive voltage‐indicating protein with near‐infrared fluorescence that scales proportionately with transmembrane potential. This integrated technology of optical stimulation and recording of electrical signals enables investigation of neuronal electrical function with unprecedented scale and precision. © 2017 by John Wiley & Sons, Inc.

Keywords: CheRiff; disease modeling; induced pluripotent stem cell; optogenetics; Optopatch; Optical electrophysiology; QuasAr; voltage indicator

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: Production of Lentivirus Encoding Optopatch Components
  • Basic Protocol 2: Culture and Transduction of Human Differentiated Neurons (CDI iCELL Neurons)
  • Basic Protocol 3: Culture and Transduction of Primary Rat Hippocampal Neurons
  • Basic Protocol 4: Optopatch Imaging of Neurons
  • Basic Protocol 5: Extraction of Neuronal Firing Properties From High‐Speed Video
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Production of Lentivirus Encoding Optopatch Components

  Materials
  • HEK293T cells (ATCC #CRL3216)
  • 10% FBS medium (see recipe)
  • Phosphate‐buffered saline (ThermoFisher Scientific, cat. no. 10010‐049)
  • Freezing medium: 20% dimethyl sulfoxide (DMSO; Sigma‐Aldrich, cat. no. D2650‐100 ml) in fetal bovine serum (FBS; HyClone, cat. no. SH30071.02HI)
  • Liquid N 2
  • Lentiviral plasmid with promoter and Optopatch gene
  • Viral packaging mix containing plasmids for PsPAX2 and PMD2.G (contains VSVG gene), supplied as 250 μg in a 0.5 μg/ml solution (Cellecta, cat. no. CPCP‐K2A)
  • Opti‐MEM reduced serum medium (ThermoFisher Scientific, cat. no. 31985‐070)
  • Polyethylenimine (PEI) MAX40000 transfection reagent (see recipe)
  • Lenti‐X Concentrator (Takara Clontech, cat. no. 631231)
  • Neurobasal medium (ThermoFisher Scientific, cat. no. 10888‐022)
  • Lenti‐X GoStix (Takara Clontech, cat. no. 631243)
  • Lenti‐X qRT‐PCR Titration Kit (Takara Clontech, cat. no. 631235)
  • 10‐cm (diameter) tissue culture dishes (Corning, cat. no. 353003)
  • 15‐ml (Corning, cat. no. 352196) and 50‐ml (Corning, cat. no. 352050) conical tubes
  • 1.8‐ml cryovials (Thermo Scientific Nunc, cat. no. 377267)
  • Liquid nitrogen storage unit
  • 15‐cm (diameter) tissue culture dishes (Corning, cat. no. 352196)
  • Epifluorescence microscope equipped with fluorescence objectives and filter cubes matched to the fused fluorescent protein (e.g., Semrock DAPI‐11LP‐A‐000, GFP‐4050B‐000, LED‐TRITC‐A‐000)
  • Centrifuge
  • 0.45 μm Steriflip‐HV (EMD Millipore, cat. no. SE1M003M00)
  • 0.6‐ml sterile tubes (ThermoFisher Scientific, cat. no. 3449)

Basic Protocol 2: Culture and Transduction of Human Differentiated Neurons (CDI iCELL Neurons)

  Materials
  • Poly‐D‐lysine (Sigma, cat. no. P6407‐5MG)
  • Phosphate‐buffered saline (PBS; Life Technologies, cat. no. 10010‐049)
  • 20 µg/ml laminin (Life Technologies, cat. no. 23017‐015)
  • iCell Neurons (Cellular Dynamics Inc. CDI, cat. no. NRC‐100‐010‐001)
  • iCell Neuron maintenance medium (CDI, cat. no. NRM‐100‐121‐001)
  • iCell Neuron maintenance medium supplement (CDI, cat. no. NRM‐100‐031‐001)
  • Lentivirus stocks ( protocol 1)
  • 0.25% trypsin‐EDTA (Sigma‐Aldrich, cat. no. T4049‐500 ML)
  • Primary glial cells (see text above step 17)
  • Glial medium (see recipe)
  • Glass‐bottomed dishes (MatTek, cat. no. P35G‐1.5‐10‐C)
  • 15‐ml (Corning, cat. no. 352196) and 50‐ml (Corning, cat. no. 352050) conical tubes
  • Poly‐D‐lysine‐coated T‐25 flasks (Corning, cat. no. 356536)
  • Centrifuge with swinging‐bucket rotors

Basic Protocol 3: Culture and Transduction of Primary Rat Hippocampal Neurons

  Materials
  • Papain enzyme with Hibernate E‐CA media (Brain Bits, cat. no. PAP/HE)
  • E18 rat hippocampus tissue (BrainBits)
  • NbActiv1 plating medium (BrainBits, cat. no. NbActiv1 500)
  • Rat neuronal culture feeding medium (see recipe)
  • Lentivirus stocks ( protocol 1)
  • Primary glial cells (see protocol 2)
  • Trans‐retinal (Sigma‐Aldrich, cat. no. R2500‐25mg)
  • Poly‐D‐lysine‐ and laminin‐coated (see protocol 2, steps 1 to 3) glass‐bottom dishes (MatTek, cat. no. P35G‐1.5‐10‐C)
  • 15‐ml conical centrifuge tubes (Corning, cat. no. 352196)
  • Additional reagents and equipment for basic cell culture techniques including counting cells (Phelan & May, )

Basic Protocol 4: Optopatch Imaging of Neurons

  Materials
  • Neurons transfected with Optopatch (see protocols above)
  • TetraSpeck beads (ThermoFisher, cat. no. T7279)
  • Tyrode's imaging buffer with synaptic blockers
  • Test compounds
  • Custom microscope comprising:
  • Fluorescence sensor—QuasAr is 50× to 100× dimmer than EGFP and requires 500‐ to 1000‐Hz frame rates for recording neuronal action potentials. These technical demands necessitate careful microscope design, the key components of which are as follows.
  • Camera—High sensitivity and high speed are required, limiting practical selections to scientific CMOS (sCMOS) or electron‐multiplied CCD (EMCCD) cameras. We selected the Hamamatsu ORCA‐Flash4.0 sCMOS camera in rolling shutter mode, which offers an excellent combination of high frame rate and low noise.
  • Microscope objective— As efficient collection of light is critical, the highest numerical aperture (NA) oil‐immersion lenses are needed. A 60× Olympus APON 60XOTIRF objective is recommended. It has an NA of 1.49 and enables grazing incidence near total internal reflection (TIR) illumination to reduce background autofluorescence.
  • Red excitation light— A high‐power laser is needed for recordings. A 140‐mW Coherent OBIS 637 LX laser with analog intensity control can be used for this purpose.
  • Blue stimulation light—While the blue light (488 nm) used to stimulate the CheRiff need not be too intense it must be modulated with sub‐millisecond temporal resolution for full flexibility. A 50‐mW Coherent OBIS 488 LX laser with an analog intensity control is recommended.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

  Ans, B., Hérault, J., & Jutten, C. (1985). Architectures neuromimétiques adaptatives: Détection de primitives. Proceedings of Cognitiva, 85, 593–597.
  Bales, K. L., Solomon, M., Jacob, S., Crawley, J. N., Silverman, J. L., Larke, R. H., … Mendoza, S. P. (2014). Long‐term exposure to intranasal oxytocin in a mouse autism model. Translational Psychiatry, 4, e480. doi: 10.1038/tp.2014.117.
  Bell, A. J., & Sejnowski, T. J. (1997). The “independent components” of natural scenes are edge filters. Vision Research, 37, 3327–3338. doi: 10.1016/S0042‐6989(97)00121‐1.
  Di Giorgio, F. P., Boulting, G. L., Bobrowicz, S., & Eggan, K. C. (2008). Human embryonic stem cell‐derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS‐causing mutation. Cell Stem Cell, 3, 637–648. doi: 10.1016/j.stem.2008.09.017.
  DeMattos, R. B., Bales, K. R., Cummins, D. J., Dodart, J. C., Paul, S. M., & Holtzman, D. M. (2001). Peripheral anti‐A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 98, 8850–8855. doi: 10.1073/pnas.151261398.
  Dempsey, G. T., Chaudhary, K. W., Atwater, N., Nguyen, C., Brown, B. S., McNeish, J. D., … Kralj, J. M. (2016). Cardiotoxicity screening with simultaneous optogenetic pacing, voltage imaging and calcium imaging. Journal of Pharmacological and Toxicological Methods, 81, 240‐50. doi: 10.1016/j.vascn.2016.05.003.
  Dull, T., Zufferey, R., Kelly, M., Mandel, R. J., Nguyen, M., Trono, D., & Naldini, L. (1998). A third‐generation lentivirus vector with a conditional packaging system. Journal of Virology, 72, 8463–8471.
  Fenno, L., Yizhar, O., & Deisseroth, K. (2011). The development and application of optogenetics. Annual Review of Neuroscience, 34, 389–412. doi: 10.1146/annurev‐neuro‐061010‐113817.
  Han, S. S. W., Williams, L. A., & Eggan, K. C. (2011). Constructing and deconstructing stem cell models of neurological disease. Neuron, 70, 626–644. doi: 10.1016/j.neuron.2011.05.003.
  Hérault, J., & Ans, B. (1984). Réseau de neurones à synapses modifiables: Décodage de messages sensoriels composites par apprentissage non supervisé et permanent. Comptes Rendus des Séances de l'Académie Des Sciences. Série 3, Sciences de la vie, 299, 525–528.
  Hérault, J., Jutten, C., & Ans, B. (1985). Détection de grandeurs primitives dans un message composite par une architecture de calcul neuromimétique en apprentissage non supervisé. In 10 Colloque sur le Traitement du Signal et des Images, FRA, 1985. Nice, France: GRETSI.
  Herault, J., Jutten, C., & Denker, J. S. (1986). Space or time adaptive signal processing by neural network models. AIP Conference Proceedings 151, 206–211.
  Hochbaum, D. R., Zhao, Y., Farhi, S. L., Klapoetke, N., Werley, C. A., Kapoor, V., … Cohen, A. E. (2014). All‐optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nature Methods, 11, 825–833.
  Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417. doi: org/10.1037/h0071325.
  Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28, 321–377. doi: 10.1093/biomet/28.3‐4.321.
  Huang, Y. L., Walker, A. S., & Miller, E. W. (2015). A Photostable Silicon Rhodamine Platform for Optical Voltage Sensing. Journal of the American Chemical Society, 137, 10767–10776. doi: 10.1021/jacs.5b06644.
  Institute of Medicine (IOM) of the National Academies (2014). Improving and accelerating therapeutic development for nervous system disorders: Workshop summary. In S. M. Posey, D. E. Pankevich, M. Davis, & Altevogt B. M. (Eds.), Forum on Neuroscience and Nervous System Disorders; Board on Health Sciences Policy; Institute of Medicine. Washington, DC: National Academies Press.
  Jiao, J., Yang, Y., Shi, Y., Chen, J., Gao, R., Fan, Y., … Gao, S. (2013). Modeling Dravet syndrome using induced pluripotent stem cells (iPSCs) and directly converted neurons. Human Molecular Genetics, 22, 4241–4252. doi: 10.1093/hmg/ddt275.
  Meikle, L., Talos, D. M., Onda, H., Pollizzi, K., Rotenberg, A., Sahin, M., .. Kwiatkowski, D. J. (2007). A mouse model of tuberous sclerosis: Neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. Journal of Neuroscience, 27, 5546–5558. doi: 10.1523/JNEUROSCI.5540‐06.2007.
  Mertens, J., Wang, Q.‐W., Kim, Y., Yu, D. X., Pham, S., Yang, B., … Yao, J. (2015). Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature, 527, 95–99. doi: 10.1038/nature15526.
  Naldini, L., Blömer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., … Trono, D. (1996). In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science, 272, 263–267. doi: 10.1126/science.272.5259.263.
  Peason, K. (1901). On lines and planes of closest fit to systems of point in space. Philosophical Magazine, 2, 559–572. doi: 10.1080/14786440109462720.
  Phelan, K., and May, K. M. (2015). Basic techniques in mammalian cell tissue culture. Current Protocols in Cell Biology, 66, 1.1.1‐1.1.22. doi: 10.1002/0471143030.cb0101s66.
  Sakuma, T., Barry, M. A., & Ikeda, Y. (2012). Lentiviral vectors: Basic to translational. The Biochemical Journal, 443, 603–618. doi: 10.1042/BJ20120146.
  Schneider, C. a, Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675. doi: 10.1038/nmeth.2089.
  Schneider, F., Grimm, C., & Hegemann, P. (2015). Biophysics of channelrhodopsin. Annual Review of Biophysics, 44, 167–186. doi: 10.1146/annurev‐biophys‐060414‐034014.
  Schoepp, D. D. (2011). Where will new neuroscience therapies come from? Nature Reviews Drug Discovery, 10, 715–716. doi: 10.1038/nrd3559.
  Wainger, B. J., Kiskinis, E., Mellin, C., Wiskow, O., Han, S. S. W., Sandoe, J., … Woolf, C. J. (2014). Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient‐derived motor neurons. Cell Reports, 7, 1–11. doi: 10.1016/j.celrep.2014.03.019.
  Yan, P., Acker, C. D., Zhou, W.‐L., Lee, P., Bollensdorff, C., Negrean, A., … Loew, L. M. (2012). Palette of fluorinated voltage‐sensitive hemicyanine dyes. Proceedings of the National Academy of Sciences, 109, 20443–20448.
  Zhou, X. E., Melcher, K., & Xu, H. E. (2012). Structure and activation of rhodopsin. Acta Pharmacologica Sinica, 33, 291–299. doi: 10.1038/aps.2011.171.
  Zufferey, R., Donello, J. E., Trono, D., & Hope, T. J. (1999). Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. Journal of Virology, 73, 2886–2892.
  Zufferey, R., Nagy, D., Mandel, R. J., Naldini, L., & Trono, D. (1997). Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nature Biotechnology, 15, 871–875. doi: 10.1038/nbt0997‐871.
Key Reference
  Hochbaum, D. R. et al. 2014. See above.
  Introduces the Optopatch system for the first time, with control experiments described in the supplement.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library