Overview of microRNA Modulation in Analgesic Research

Sujay Ramanathan1, Botros B. Shenoda1, Seena K. Ajit1

1 Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia
Publication Name:  Current Protocols in Pharmacology
Unit Number:  Unit 9.25
DOI:  10.1002/cpph.29
Online Posting Date:  December, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


MicroRNA(miRNA)‐mediated gene regulation underlies cellular processes, playing an important role in homeostasis and diseases. The expression and function of miRNAs are altered by various pharmacological agents, with differences in the endogenous levels of miRNAs influencing drug efficacy and toxicity. Thus, miRNA levels could be a biomarker for predicting treatment response, efficacy, and safety. In addition, elucidating the mechanistic significance of miRNA alterations can aid in the identification of therapeutic targets and patient selection, and guide personalized therapy. Discussed in this overview are the properties of miRNA, their modulation, and the ways to measure them. The effects of different classes of analgesics, including opioid and non‐opioid, are described as examples of drug‐induced modifications of miRNA, with a discussion on how measurement of miRNA levels in patients receiving analgesic therapy can assist in maximizing effectiveness while minimizing the untoward responses to this drug class. © 2017 by John Wiley & Sons, Inc.

Keywords: analgesic drugs; biomarker; drug metabolism; miRNA; pain

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Biogenesis and Mechanism of Action
  • Nomenclature, Profiling, and Data Analysis
  • Prediction and Validation of miRNA Targets
  • Modulation of miRNAs in Pain and Analgesia
  • Conclusions
  • Acknowledgements
  • Conflict of Interest
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Akhtar, M. M., Micolucci, L., Islam, M. S., Olivieri, F., & Procopio, A. D. (2016). Bioinformatic tools for microRNA dissection. Nucleic Acids Research, 44(1), 24–44. doi: 10.1093/nar/gkv1221.
  Akhtar, N., & Haqqi, T. M. (2012). MicroRNA‐199a* regulates the expression of cyclooxygenase‐2 in human chondrocytes. Annals of the Rheumatic Diseases, 71(6), 1073–1080. doi: 10.1136/annrheumdis‐2011‐200519.
  Amar, P. J., & Schiff, E. R. (2007). Acetaminophen safety and hepatotoxicity—where do we go from here? Expert Opinion on Drug Safety, 6(4), 341–355. doi: 10.1517/14740338.6.4.341.
  Andersen, H. H., Duroux, M., & Gazerani, P. (2016). Serum MicroRNA signatures in migraineurs during attacks and in pain‐free Periods. Molecular Neurobiology, 53(3), 1494–1500. doi: 10.1007/s12035‐015‐9106‐5.
  Beyer, C., Zampetaki, A., Lin, N. Y., Kleyer, A., Perricone, C., Iagnocco, A., … Kiechl, S. (2015). Signature of circulating microRNAs in osteoarthritis. Annals of the Rheumatic Diseases, 74(3), e18. doi: 10.1136/annrheumdis‐2013‐204698.
  Bjersing, J. L., Lundborg, C., Bokarewa, M. I., & Mannerkorpi, K. (2013). Profile of cerebrospinal microRNAs in fibromyalgia. PLoS One, 8(10), e78762. doi: 10.1371/journal.pone.0078762.
  Chen, L., Yang, G., & Grosser, T. (2012). Prostanoids and inflammatory pain. Prostaglandins & Other Lipid Mediators, 104‐105, 58–66. doi: 10.1016/j.prostaglandins.2012.08.006.
  Cheng, K., Rai, P., Plagov, A., Lan, X., Mathieson, P. W., Saleem, M. A., … Singhal, P. C. (2013). Rapamycin‐induced modulation of miRNA expression is associated with amelioration of HIV‐associated nephropathy (HIVAN). Experimental Cell Research, 319(13), 2073–2080. doi: 10.1016/j.yexcr.2013.04.011.
  Dave, R. S., & Khalili, K. (2010). Morphine treatment of human monocyte‐derived macrophages induces differential miRNA and protein expression: Impact on inflammation and oxidative stress in the central nervous system. Journal of Cellular Biochemistry, 110(4), 834–845. doi: 10.1002/jcb.22592.
  De Guire, V., Robitaille, R., Tetreault, N., Guerin, R., Menard, C., Bambace, N., & Sapieha, P. (2013). Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: Promises and challenges. Clinical Biochemistry, 46(10‐11), 846–860. doi: 10.1016/j.clinbiochem.2013.03.015.
  Douglas, S. R., Shenoda, B. B., Qureshi, R. A., Sacan, A., Alexander, G. M., Perreault, M., … Ajit, S. K. (2015). Analgesic response to intravenous ketamine is linked to a circulating microRNA signature in female patients with complex regional pain syndrome. The Journal of Pain, 16(9), 814–824. doi: 10.1016/j.jpain.2015.05.008.
  El Andaloussi, S., Mager, I., Breakefield, X. O., & Wood, M. J. A. (2013). Extracellular vesicles: Biology and emerging therapeutic opportunities. Nature reviews. Drug Discovery, 12(5), 347–357. doi: 10.1038/nrd3978.
  Favereaux, A., Thoumine, O., Bouali‐Benazzouz, R., Roques, V., Papon, M. A., Salam, S. A., … Landry, M. (2011). Bidirectional integrative regulation of Cav1.2 calcium channel by microRNA miR‐103: Role in pain. The EMBO Journal, 30(18), 3830–3841. doi: 10.1038/emboj.2011.249.
  Gorski, S. A., Vogel, J., & Doudna, J. A. (2017). RNA‐based recognition and targeting: Sowing the seeds of specificity. Nature Reviews. Molecular Cell Biology, 18(4), 215–228. doi: 10.1038/nrm.2016.174.
  He, Y., Chevillet, J. R., Liu, G., Kim, T. K., & Wang, K. (2015). The effects of microRNA on the absorption, distribution, metabolism and excretion of drugs. British Journal of Pharmacology, 172(11), 2733–2747. doi: 10.1111/bph.12968.
  He, Y., Yang, C., Kirkmire, C. M., & Wang, Z. J. (2010). Regulation of opioid tolerance by let‐7 family microRNA targeting the mu opioid receptor. The Journal of Neuroscience, 30(30), 10251–10258. doi: 10.1523/JNEUROSCI.2419‐10.2010.
  Huang, Z. Z., Wei, J. Y., Ou‐Yang, H. D., Li, D., Xu, T., Wu, S. L., … Xin, W. J. (2016). mir‐500‐mediated GAD67 downregulation contributes to neuropathic pain. The Journal of Neuroscience, 36(23), 6321–6331. doi: 10.1523/JNEUROSCI.0646‐16.2016.
  Hwang, C. K., Wagley, Y., Law, P.‐Y., Wei, L.‐N., & Loh, H. H. (2012). MicroRNAs in opioid pharmacology. Journal of Neuroimmune Pharmacology, 7(4), 808–819. doi: 10.1007/s11481‐011‐9323‐2.
  Li, M.‐P., Hu, Y.‐D., Hu, X.‐L., Zhang, Y.‐J., Yang, Y.‐L., Jiang, C., … Chen, X.‐P. (2016). MiRNAs and miRNA polymorphisms modify drug response. International Journal of Environmental Research and Public Health, 13(11), 1096. doi: 10.3390/ijerph13111096.
  Li, X., Gibson, G., Kim, J. S., Kroin, J., Xu, S., van Wijnen, A. J., & Im, H. J. (2011). MicroRNA‐146a is linked to pain‐related pathophysiology of osteoarthritis. Gene, 480(1‐2), 34–41. doi: 10.1016/j.gene.2011.03.003.
  McDonald, M. K., & Ajit, S. K. (2015). Chapter Eight ‐ MicroRNA Biology and Pain. In J. P. Theodore & D. Gregory (Eds.), Progress in Molecular Biology and Translational Science (Vol. 131, pp. 215–249). San Diego: Academic Press.
  Moldovan, L., Batte, K. E., Trgovcich, J., Wisler, J., Marsh, C. B., & Piper, M. (2014). Methodological challenges in utilizing miRNAs as circulating biomarkers. Journal of Cellular and Molecular Medicine, 18(3), 371–390. doi: 10.1111/jcmm.12236.
  Neudecker, V., Brodsky, K. S., Kreth, S., Ginde, A. A., & Eltzschig, H. K. (2016). Emerging roles for microRNAs in perioperative medicine. Anesthesiology, 124(2), 489–506. doi: 10.1097/ALN.0000000000000969.
  Niesters, M., Martini, C., & Dahan, A. (2014). Ketamine for chronic pain: Risks and benefits. British Journal of Clinical Pharmacology, 77(2), 357–367. doi: 10.1111/bcp.12094.
  Orlova, I. A., Alexander, G. M., Qureshi, R. A., Sacan, A., Graziano, A., Barrett, J. E., … Ajit, S. K. (2011). MicroRNA modulation in complex regional pain syndrome. Journal of Translational Medicine, 9, 195. doi: 10.1186/1479‐5876‐9‐195.
  Pauley, K. M., Satoh, M., Chan, A. L., Bubb, M. R., Reeves, W. H., & Chan, E. K. (2008). Upregulated miR‐146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Research & Therapy, 10(4), R101. doi: 10.1186/ar2493.
  Qureshi, R., Tian, Y., McDonald, M., Capasso, K., Douglas, S., Gao, R., … Sacan, A. (2015). Circulating microRNA signatures in rodent models of pain. Molecular Neurobiology, 53, 3416–3427. doi: 10.1007/s12035‐015‐9281‐4
  Rupaimoole, R., & Slack, F. J. (2017). MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nature Reviews. Drug Discovery, 16(3), 203–222. doi: 10.1038/nrd.2016.246
  Schwarzenbach, H., da Silva, A. M., Calin, G., & Pantel, K. (2015). Data normalization strategies for microRNA quantification. Clinical Chemistry, 61(11), 1333–1342. doi:10.1373/clinchem.2015.239459.
  Sengupta, J. N., Pochiraju, S., Kannampalli, P., Bruckert, M., Addya, S., Yadav, P., … Banerjee, B. (2013). MicroRNA‐mediated GABA alpha‐1 receptor subunit down‐regulation in adult spinal cord following neonatal cystitis‐induced chronic visceral pain in rats. Pain, 154(1), 59–70. doi: 10.1016/j.pain.2012.09.002.
  Shenoda, B. B., Alexander, G. M., & Ajit, S. K. (2016). Hsa‐miR‐34a mediated repression of corticotrophin releasing hormone receptor 1 regulates pro‐opiomelanocortin expression in patients with complex regional pain syndrome. Journal of Translational Medicine, 14(1), 64. doi: 10.1186/s12967‐016‐0820‐1.
  Shenoda, B. B., Ramanathan, S., & Ajit, S. K. (2017). In vitro validation of miRNA‐mediated gene expression linked to drug metabolism. Current Protocols in Pharmacology, 79, 9.26.1–9.26.15. doi: 10.1002/cpph.30.
  Steinkraus, B. R., Toegel, M., & Fulga, T. A. (2016). Tiny giants of gene regulation: Experimental strategies for microRNA functional studies. Wiley Interdisciplinary Reviews: Developmental Biology, 5(3), 311–362. doi: 10.1002/wdev.223.
  Tafuri, E., Santovito, D., de Nardis, V., Marcantonio, P., Paganelli, C., Affaitati, G., … Cipollone, F. (2015). MicroRNA profiling in migraine without aura: Pilot study. Annals of Medicine, 47(6), 468–473. doi: 10.3109/07853890.2015.1071871.
  von Schack, D., Agostino, M. J., Murray, B. S., Li, Y., Reddy, P. S., Chen, J., … Ajit, S. K. (2011). Dynamic changes in the microRNA expression profile reveal multiple regulatory mechanisms in the spinal nerve ligation model of neuropathic pain. PLoS One, 6(3), e17670. doi: 10.1371/journal.pone.0017670.
  Wang, J., Zhou, M., Wang, X., Yang, X., Wang, M., Zhang, C., … Tang, N. (2014). Impact of ketamine on learning and memory function, neuronal apoptosis and its potential association with miR‐214 and PTEN in adolescent rats. PLoS One, 9(6), e99855. doi: 10.1371/journal.pone.0099855.
  Wang, K., Zhang, S., Marzolf, B., Troisch, P., Brightman, A., Hu, Z., … Galas, D. J. (2009). Circulating microRNAs, potential biomarkers for drug‐induced liver injury. Proceedings of the National Academy of Sciences, 106(11), 4402–4407. doi: 10.1073/pnas.0813371106.
  Ward, J., Kanchagar, C., Veksler‐Lublinsky, I., Lee, R. C., McGill, M. R., Jaeschke, H., … Ambros, V. R. (2014). Circulating microRNA profiles in human patients with acetaminophen hepatotoxicity or ischemic hepatitis. Proceedings of the National Academy of Sciences of the United States of America, 111(33), 12169–12174. doi: 10.1073/pnas.1412608111.
  Wu, Q., Hwang, C. K., Zheng, H., Wagley, Y., Lin, H.‐Y., Kim, D. K., … Wei, L.‐N. (2013). MicroRNA 339 down‐regulates μ‐opioid receptor at the post‐transcriptional level in response to opioid treatment. The FASEB Journal, 27(2), 522–535. doi: 10.1096/fj.12‐213439.
  Wu, Q., Zhang, L., Law, P. Y., Wei, L. N., & Loh, H. H. (2009). Long‐term morphine treatment decreases the association of mu‐opioid receptor (MOR1) mRNA with polysomes through miRNA23b. Molecular Pharmacology, 75(4), 744–750. doi: 10.1124/mol.108.053462.
  Xu, H., Zhang, J., Zhou, W., Feng, Y., Teng, S., & Song, X. (2015). The role of miR‐124 in modulating hippocampal neurotoxicity induced by ketamine anesthesia. The International Journal of Neuroscience, 125(3), 213–220. doi: 10.3109/00207454.2014.919915.
  Yang, X., Salminen, W. F., Shi, Q., Greenhaw, J., Gill, P. S., Bhattacharyya, S., … James, L. P. (2015). Potential of extracellular microRNAs as biomarkers of acetaminophen toxicity in children. Toxicology and Applied Pharmacology, 284(2), 180–187. doi: 10.1016/j.taap.2015.02.013.
  Yang, X., Yang, Q., Wang, X., Luo, C., Wan, Y., Li, J., … Zhang, C. (2014). MicroRNA expression profile and functional analysis reveal that miR‐206 is a critical novel gene for the expression of BDNF induced by ketamine. Neuromolecular Medicine, 16(3), 594–605. doi: 10.1007/s12017‐014‐8312‐z.
  Zanos, P., Moaddel, R., Morris, P. J., Georgiou, P., Fischell, J., Elmer, G. I., … Gould, T. D. (2016). NMDAR inhibition‐independent antidepressant actions of ketamine metabolites. Nature, 533(7604), 481–486. doi: 10.1038/nature17998.
PDF or HTML at Wiley Online Library