An Inexpensive, Easy‐to‐Use, and Highly Customizable Growth Chamber Optimized for Growing Large Plants

Thu M. Tran1, David M. Braun1

1 Plant Imaging Consortium
Publication Name:  Current Protocols in Plant Biology
Unit Number:   
DOI:  10.1002/cppb.20059
Online Posting Date:  December, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The ability to grow plants in highly controlled and reproducible environments is a critical factor for successful plant biology experiments. This protocol describes a simple and inexpensive method for constructing a fully automatic controlled growth chamber that can be easily adapted in plant biology laboratories as well as classrooms. All the materials described in this protocol can be found in garden and home improvement stores or through websites, making the procurement and setup for growing plants in a controlled environment less expensive and convenient. Furthermore, the system is highly customizable and can be used to study plant responses to numerous abiotic and biotic stress conditions. The growth chamber is designed to enable growth and characterization of large plants, such as maize and soybean. © 2017 by John Wiley & Sons, Inc.

Keywords: controlled environmental conditions; growth chamber; maize; soybean

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: Setting Up the Growth Chamber
  • Basic Protocol 2: Using the Growth Chamber to Grow Maize and Soybean Model Inbred Lines from Seeds to the MID‐Vegetative Stage
  • Basic Protocol 3: Using the Growth Chamber for Growing Rapid Cycling Maize and Soybean Lines From Seed to Seed
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Setting Up the Growth Chamber

  Materials
  • Components of growth chamber (see Table 20.5.9000)
  • Medium‐sized flat‐head screwdriver
  • Pest control: Yellow sticky pest traps (Hummert International, cat. no. 01‐3700, optional)

Basic Protocol 2: Using the Growth Chamber to Grow Maize and Soybean Model Inbred Lines from Seeds to the MID‐Vegetative Stage

  Materials
  • Ferrous sulfate (Hummert International, cat.no. 07‐0851)
  • N‐P‐K 12‐12‐12 fertilizer (Dyma Green, Hummert International, cat. no. 07‐2812)
  • Peat moss–based potting soil (Pro‐Mix BX, Hummert International, cat. no. 10‐2000)
  • Maize cv. B73 seeds (Germplasm Resources Information Network, stock no. PI 550473)
  • Soybean cv. W82 seeds (Germplasm Resources Information Network, stock no. PI 518671)
  • Iron chelate (Sprint 330 FE, Hummert International, cat. no. 07‐1511)
  • N‐P‐K 20‐20‐20 fertilizer (Jack's Classic, Hummert International, cat.no. 65‐3850)
  • Growth chamber (see protocol 1)
  • 11 × 12–cm seedling pots (Hummert International, cat. no. 14‐3362)
  • Seedling flats without holes (Hummert International, cat. no. 11‐3110)
  • 2‐gal. (7.57‐liter) pots (Hummert International, cat. no. 13‐0208)
  • Stakes (optional)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Baker, R. F., Leach, K. A., Boyer, N. R., Swyers, M. J., Benitez‐Alfonso, Y., Skopelitis, T., … Braun, D. M. (2016). Sucrose transporter ZmSut1 expression and localization uncover new insights into sucrose phloem loading. Plant Physiology, 172, 1876–1898. doi: 10.1104/pp.16.00884.
  Braun, D. M., Ma, Y., Inada, N., Muszynski, M. G., & Baker, R. F. (2006). tie‐dyed1 regulates carbohydrate accumulation in maize leaves. Plant Physiology, 142, 1511–1522. doi: 10.1104/pp.106.090381.
  Bush, J., Jander, G., & Ausubel, F. M. (2006). Prevention and control of pests and diseases. Methods in Molecular Biology, 323, 13–25. doi: 10.1385/1‐59745‐003‐0:13.
  Cheesbrough, T. M. (1989). Changes in the enzymes for fatty acid synthesis and desaturation during acclimation of developing soybean seeds to altered growth temperature. Plant Physiology, 90, 760–764. doi: 10.1104/pp.90.2.760.
  Cheng, Y.‐K., & Cheng, K. (2006). General study for using LED to replace traditional lighting devices. Power Electronics Systems and Applications, 2006. ICPESA'06. 2nd International Conference, Hong Kong, China.
  Hossain, M. S., Kawakatsu, T., Kim, K. D., Zhang, N., Nguyen, C. T., Khan, S. M., … Stacey, G. (2017). Divergent cytosine DNA methylation patterns in single‐cell, soybean root hairs. The New Phytologist, 214, 808–819. doi: 10.1111/nph.14421.
  Huang, M., Slewinski, T. L., Baker, R. F., Janick‐Buckner, D., Buckner, B., Johal, G. S., & Braun, D. M. (2009). Camouflage patterning in maize leaves results from a defect in porphobilinogen deaminase. Molecular Plant, 2, 773–789. doi: 10.1093/mp/ssp029.
  Ishibashi, M., & Terashima, I. (1995). Effects of continuous leaf wetness on photosynthesis: Adverse aspects of rainfall. Plant, Cell & Environment, 18, 431–438. doi: 10.1111/j.1365‐3040.1995.tb00377.x.
  Katagiri, F., Canelon‐Suarez, D., Griffin, K., Petersen, J., Meyer, R. K., Siegle, M., & Mase, K. (2015). Design and construction of an inexpensive homemade plant growth chamber. PLoS One, 10, e0126826. doi: 10.1371/journal.pone.0126826.
  Kulkarni, K. P., Asekova, S., Lee, D.‐H., Bilyeu, K., Song, J. T., & Lee, J.‐D. (2017). Mapping QTLs for 100‐seed weight in an interspecific soybean cross of Williams 82 (Glycine max) and PI 366121 (Glycine soja). Crop and Pasture Science, 68, 148–155. doi: 10.1071/CP16246.
  McCaw, M. E., & Birchler, J. A. (2017). Handling Fast‐Flowering Mini‐Maize. Current Protocols in Plant Biology, 2, 124–134. doi: 10.1002/cppb.20051.
  McCaw, M. E., Wallace, J. G., Albert, P. S., Buckler, E. S., & Birchler, J. A. (2016). Fast‐Flowering Mini‐Maize: Seed to seed in 60 days. Genetics, 204, 35–42. doi: 10.1534/genetics.116.191726.
  Morrow, R. C. (2008). LED lighting in horticulture. HortScience, 43, 1947–1950.
  Nelson, P. V. (1998). Greenhouse Operation and Management. Upper Saddle River, N.J.: Prentice Hall.
  Nguyen, C. T., Singh, V., van Oosterom, E. J., Chapman, S. C., Jordan, D. R., & Hammer, G. L. (2013). Genetic variability in high temperature effects on seed‐set in sorghum. Functional Plant Biology, 40, 439–448. doi: 10.1071/FP12264.
  Paulitz, T. C., & Bélanger, R. R. (2001). Biological control in greenhouse systems. Annual Review of Phytopathology, 39, 103–133. doi: 10.1146/annurev.phyto.39.1.103.
  Saab, I. N., Sharp, R. E., Pritchard, J., & Voetberg, G. S. (1990). Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiology, 93, 1329–1336. doi: 10.1104/pp.93.4.1329.
  Schmutz, J., Cannon, S. B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., … Cheng, J. (2010). Genome sequence of the palaeopolyploid soybean. Nature, 463, 178–183. doi: 10.1038/nature08670.
  Schnable, P. S., Ware, D., Fulton, R. S., Stein, J. C., Wei, F., Pasternak, S., … Wilson, R. K. (2009). The B73 maize genome: Complexity, diversity, and dynamics. Science, 326, 1112–1115. doi: 10.1126/science.1178534.
  Schratz, M., Gupta, C., Struhs, T., & Gray, K. (2016). A new way to see the light: Improving light quality with cost‐effective LED technology. IEEE Industry Applications Magazine, 22, 55–62. doi: 10.1109/MIAS.2015.2459089.
  Sharp, R. E., LeNoble, M. E., Else, M. A., Thorne, E. T., & Gherardi, F. (2000). Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: Evidence for an interaction with ethylene. Journal of Experimental Botany, 51, 1575–1584. doi: 10.1093/jexbot/51.350.1575.
  Shurtleff, W., & Aoyagi, A. (2015). History of soybeans and soyfoods in Sweden, Norway, Denmark and Finland (1735‐2015): Extensively annotated bibliography and sourcebook. Lafayette, CA: Soyinfo Center.
  Slewinski, T. L., & Braun, D. M. (2010). The psychedelic genes of maize redundantly promote carbohydrate export from leaves. Genetics, 185, 221–232. doi: 10.1534/genetics.109.113357.
  Tran, T. M., Hampton, C. S., Brossard, T. W., Harmata, M., Robertson, J. D., Jurisson, S. S., & Braun, D. M. (2017). In vivo transport of three radioactive [18F]‐fluorinated deoxysucrose analogs by the maize sucrose transporter ZmSUT1. Plant Physiology and Biochemistry, 115, 1–11. doi: 10.1016/j.plaphy.2017.03.006.
  Wilke, A., Bronson, C., Tomas, A., & Munkvold, G. (2007). Seed transmission of Fusarium verticillioides in maize plants grown under three different temperature regimes. Plant Disease, 91, 1109–1115. doi: 10.1094/PDIS‐91‐9‐1109.
  Williams, P. H., & Hill, C. B. (1986). Rapid‐cycling populations of Brassica. Science, 232, 1385–1389. doi: 10.1126/science.232.4756.1385.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library