Diet‐Induced Models of Obesity (DIO) in Rodents

Didier Bagnol1, Hussien A. Al‐Shamma1, Dominic Behan1, Kevin Whelan1, Andrew J. Grottick1

1 Arena Pharmaceuticals, San Diego, California
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 9.38
DOI:  10.1002/0471142301.ns0938s59
Online Posting Date:  April, 2012
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Obesity results from a complex interplay between a susceptible genotype and an environment that both promotes increased caloric intake and enables sustained decreases in energy expenditure. One commonly employed approach to modeling obesity in preclinical species is the diet‐induced obese (DIO) rodent. Here, theoretical and practical considerations for producing obese rodents via dietary manipulation, and for assessing drug‐induced changes in food intake and body weight are described. Based on these considerations, a standardized protocol for diet‐induced obesity in both mouse and rat is provided and sample data from these models are also described. Curr. Protoc. Neurosci. 59:9.38.1‐9.38.13. © 2012 by John Wiley & Sons, Inc.

Keywords: high‐fat diet; cafeteria diet; food intake; DIO

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: High‐Fat Diet–Induced Obesity (DIO) in Rats
  • Basic Protocol 2: High‐Fat Diet–Induced Obesity (DIO) in Mice
  • Support Protocol 1: Acute Pharmacological Manipulation in DIO Mice and Rats
  • Support Protocol 2: Chronic Pharmacological Manipulation in DIO Mice and Rats
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: High‐Fat Diet–Induced Obesity (DIO) in Rats

  • Male adult outbred Sprague Dawley rats (see Critical Parameters for considerations of age and group size)
  • 45% Kcal fat, purified diet (Research Diets Inc., Harlan Teklad, Dyets Inc., Bio‐Serv, TestDiet, Kliba‐Nafag AG, Altromin)
  • 10% Kcal fat, purified diet (for control low‐fat group)
  • Individual clear plastic cages (45 × 21 × 24‐cm) with sawdust bedding (Sani‐chip; Harlan Teklad)
  • Non‐drip water bottles
  • Weighing scale (range 0 to 1000 g, accurate to ±0.1 g)
  • 1000‐ml plastic beaker or bowl

Basic Protocol 2: High‐Fat Diet–Induced Obesity (DIO) in Mice

  • Adult male inbred mice, e.g., C57Bl6 (see Critical Parameters for considerations of age and group size)
  • 60% Kcal fat, purified diet (Research Diets Inc., Harlan Teklad, Dyets Inc., Bio‐Serv, TestDiet, Kliba‐Nafag AG, Altromin)
  • 10% Kcal fat, purified diet (for control low‐fat group)
  • Non‐drip water bottles
  • Individual clear plastic cages (28 × 28 × 12‐cm) with soft bedding (e.g., corncob or sani‐chips, Harlan) and nestlets (Ancare) and/or mouse igloo (Bio‐Serv, VWR) for environmental enrichment
  • Weighing scale (range 0 to 500 g, accurate to ± 0.1 g)
  • 1000‐ml plastic beaker or bowl (receptacle used for weighing)

Support Protocol 1: Acute Pharmacological Manipulation in DIO Mice and Rats

  • Drug compound(s)
  • Sterile distilled water, saline, or other vehicle
  • Laboratory chow (Research Diets Inc., Harlan Teklad, Dyets Inc., Bio‐Serv, TestDiet, Kliba‐Nafag AG, Altromin)
  • Flexible plastic feeding tube (ranging from 5‐ to 8‐FR/12‐ to 18‐G; ∼12‐G/8‐FR) for oral dosing in rats or flexible plastic feeding tube (ranging from 2‐ to 5‐FR/18‐ to 22‐G; ∼22‐G/2‐FR) for oral dosing in mice
  • Sterile needles 25‐ to 27‐G for i.p./s.c./i.m. dosing in rats (larger‐gauged needles can be used if either larger volumes or insoluble compounds are to be administered) or sterile needles 27‐ to 30‐G for i.p./s.c./i.m. dosing in mice (larger‐gauged needles can be used if either larger volumes or insoluble compounds are to be administered)
  • 1‐ to 3‐ml syringes
  • Animal cages with steel raised grid flooring
  • Scale
  • Ultrasonic bath or probe sonicator
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Buettner, R., Scholmerich, J., and Bollheimer, L.C. 2007. High‐fat diets: Modeling the metabolic disorders of human obesity in rodents. Obesity 15:798‐808.
   Bura, S.A., Burokas, A., Martin‐Garcia, E., and Maldonado, R. 2010. Effects of chronic nicotine on food intake and anxiety‐like behaviour in CB(1) knockout mice. Eur. Neuropsychopharmacol. 20:369‐378.
   Cederroth, C.R., Vinciguerra, M., Kuhne, F., Madani, R., Doerge, D.R., Visser, T.J., Foti, M., Rohner‐Jeanrenaud, F., Vassalli, J.D., and Nef, S. 2007. A phytoestrogen‐rich diet increases energy expenditure and decreases adiposity in mice. Environ. Health Perspect. 115:1467‐1473.
   Donovan, J. and Brown, P. 2004. Animal Identification. Curr. Protoc. Neurosci. 27:A.4E.1‐A.4E.4.
   Ekmekcioglu, C. and Touitou, Y. 2011. Chronobiological aspects of food intake and metabolism and their relevance on energy balance and weight regulation. Obes. Rev. 12:14‐25.
   Froy, O. 2010. Metabolism and circadian rhythms—Implications for obesity. Endocr. Rev. 31:1‐24.
   Gajda, A.M., Pellizzon, M.A., Ricci, M.R., and Ulman, E.A. 2007. Diet‐induced metabolic syndrome in rodent models. Animal Lab News March
   Ghibaudi, L., Cook, J. Farley, C., Van Heek, M., and Hwa, J.J. 2002. Fat intake affects adiposity, comorbidity factors, and energy metabolism of sprague‐dawley rats. Obes. Res. 10:956‐963.
   Guillaume, P., Provost, D., and Lacroix, P. 2008. Gastrointestinal models: Intestinal transit, gastric emptying, and ulcerogenic activity in the rat. Curr. Protoc. Pharmacol. 42:5.3.1‐5.3.12.
   Haslam, D.W. and James, W.P. 2005. Obesity. Lancet 366:1197‐1209.
   Ignar, D.M., Goetz, A.S., Noble, K.N., Carballo, L.H., Stroup, A.E., Fisher, J.C., Boucheron, J.A., Brainard, T.A., Larkin, A.L., Epperly, A.H., Shearer, T.W., Sorensen, S.D., Speake, J.D., and Hommel, J.D. 2011. Regulation of ingestive behaviors in the rat by GSK1521498, a novel micro‐opioid receptor‐selective inverse agonist. J. Pharmacol. Exp. Ther. 339:24‐34.
   Kampe, J., Wiedmer, P., Pfluger, P.T., Castaneda, T.R., Burget, L., Mondala, H., Kerr, J., Liaw, C., Oldfield, B.J., Tschop, M.H., and Bagnol, D. 2006. Effect of central administration of QRFP(26) peptide on energy balance and characterization of a second QRFP receptor in rat. Brain Res. 1119:133‐149.
   Kennedy, A.J., Ellacott, K.L., King, V.L., and Hasty, A.H. 2010. Mouse models of the metabolic syndrome. Dis. Model Mech. 3:156‐166.
   Kopelman, P.G. 2000. Obesity as a medical problem. Nature 404:635‐643.
   Kretschmer, B.D., Schelling, P., Beier, N., Liebscher, C., Treutel, S., Kruger, N., Scholz, H.P., and Haus, A. 2005. Modulatory role of food, feeding regime and physical exercise on body weight and insulin resistance. Life Sci. 76:1553‐1573.
   Levin, B.E., Triscari, J., and Sullivan, A.C. 1983. Relationship between sympathetic activity and diet‐induced obesity in two rat strains. Am. J. Physiol. 245:R364‐R371.
   Levin, B.E., Dunn‐Meynell, A.A., Balkan, B., and Keesey, R.E. 1997. Selective breeding for diet‐induced obesity and resistance in Sprague‐Dawley rats. Am. J. Physiol. 273:725‐730.
   Liu, Y.L., Malik, N., Sanger, G.J., Friedman, M.I., and Andrews, P.L. 2005. Pica—A model of nausea? Species differences in response to cisplatin. Physiol. Behav. 85:271‐277.
   Lo, C.M., Samuelson, L.C., Chambers, J.B., King, A., Heiman, J., Jandacek, R.J., Sakai, R.R., Benoit, S.C., Raybould, H.E., Woods, S.C., and Tso, P. 2008. Characterization of mice lacking the gene for cholecystokinin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294:R803‐R810.
   Madsen, A.N., Hansen, G., Paulsen, S.J., Lykkegaard, K., Tang‐Christensen, M., Hansen, H.S., Levin, B.E., Larsen, P.J., Knudsen, L.B., Fosgerau, K., and Vrang, N. 2010. Long‐term characterization of the diet‐induced obese and diet‐resistant rat model: A polygenetic rat model mimicking the human obesity syndrome. J. Endocrinol. 206:287‐296.
   Maida, A., Lovshin, J.A., Baggio, L.L., and Drucker, D.J. 2008. The glucagon‐like peptide‐1 receptor agonist oxyntomodulin enhances beta‐cell function but does not inhibit gastric emptying in mice. Endocrinology 149:5670‐5678.
   Nogueiras, R., Pfluger, P., Tovar, S., Arnold, M., Mitchell, S., Morris, A., Perez‐Tilve, D., Vazquez, M.J., Wiedmer, P., Castaneda, T.R., Dimarchi, R., Tschop, M., Schurmann, A., Joost, H.G., Williams, L.M., Langhans, W., and Dieguez, C. 2007. Effects of obestatin on energy balance and growth hormone secretion in rodents. Endocrinology 148:21‐26.
   Ogden, C.L., Lamb, M.M., Carroll, M.D., and Flegal, K.M. 2010. Obesity and socioeconomic status in adults: United States, 2005‐2008. NCHS Data Brief 1‐8.
   Prpic, V., Watson, P.M., Frampton, I.C., Sabol, M.A., Jezek, G.E., and Gettys, T.W. 2002. Adaptive changes in adipocyte gene expression differ in AKR/J and SWR/J mice during diet‐induced obesity. J. Nutr. 132:3325‐3332.
   Riley, A.L. and Freeman, K.B. 2004. Conditioned flavor aversions: Assessment of drug‐induced suppression of food intake. Curr. Protoc. Neurosci. 29:8.6E.1‐8.6E.12.
   Rossmeisl, M., Rim, J.S., Koza, R.A., and Kozak, L.P. 2003. Variation in type 2 diabetes—Related traits in mouse strains susceptible to diet‐induced obesity. Diabetes 52:1958‐1966.
   Roth, J.D., Coffey, T., Jodka, C.M., Maier, H., Athanacio, J.R., Mack, C.M., Weyer, C., and Parkes, D.G. 2007. Combination therapy with amylin and peptide YY[3‐36] in obese rodents: Anorexigenic synergy and weight loss additivity. Endocrinology 148:6054‐6061.
   Rothwell, N.J. and Stock, M.J. 1988. The cafeteria diet as a tool for studies of thermogenesis. J. Nutr. 118:925‐928.
   Sampey, B.P., Vanhoose, A.M., Winfield, H.M., Freemerman, A.J., Muehlbauer, M.J., Fueger, P.T., Newgard, C.B., and Makowski, L. 2011. Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: Comparison to high‐fat diet. Obesity 19:1109‐1117.
   Sanchez, J., Oliver, P., Pico, C., and Palou, A. 2004. Diurnal rhythms of leptin and ghrelin in the systemic circulation and in the gastric mucosa are related to food intake in rats. Pflugers Arch. 448:500‐506.
   Semple, G., Tran, T.A., Kramer, B., Hsu, D., Han, S., Choi, J., Vallar, P., Casper, M.D., Zou, N., Hauser, E.K., Thomsen, W., Whelan, K., Sengupta, D., Morgan, M., Sekiguchi, Y., Kanuma, K., Chaki, S., and Grottick, A.J. 2009. Pyrimidine‐based antagonists of h‐MCH‐R1 derived from ATC0175: In vitro profiling and in vivo evaluation. Bioorg. Med. Chem. Lett. 19:6166‐6171.
   Stengel, A., Goebel, M., Wang, L., Rivier, J., Kobelt, P., Monnikes, H., and Tache, Y. 2010. Activation of brain somatostatin 2 receptors stimulates feeding in mice: analysis of food intake microstructure. Physiol. Behav. 101:614‐622.
   Surwit, R.S., Feinglos, M.N., Rodin, J., Sutherland, A., Petro, A.E., Opara, E.C., Kuhn, C.M., and Rebuffe‐Scrive, M. 1995. Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice. Metabolism 44:645‐651.
   Svartengren, J., Modiri, A.R., and McArthur, R.A. 2005. Measurement and characterization of energy intake in the mouse. Curr. Protoc. Pharmacol. 28:5.40.1‐5.40.19.
   Tschop, M. and Heiman, M.L. 2001. Overview of rodent models for obesity research. Curr. Protoc. Neurosci. 17:9.10.1‐9.10.14.
   Yamamoto, K., Matsunaga, S., Matsui, M., Takeda, N., and Yamatodani, A. 2002. PICA in mice as a new model for the study of emesis. Methods Find. Exp. Clin. Pharmacol. 24:135‐138.
PDF or HTML at Wiley Online Library