Overview of Animal Models of Attention Deficit Hyperactivity Disorder (ADHD)

Vivienne Ann Russell1

1 Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 9.35
DOI:  10.1002/0471142301.ns0935s54
Online Posting Date:  January, 2011
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Attention‐deficit/hyperactivity disorder (ADHD) is a heterogeneous, highly heritable, behavioral disorder that affects ∼5% to 10% of children worldwide. Although animal models cannot truly reflect human psychiatric disorders, they can provide insight into the disorder that cannot be obtained from human studies because of the limitations of available techniques. Genetic models include the spontaneously hypertensive rat (SHR), the Naples High Excitability (NHE) rat, poor performers in the 5‐choice serial reaction time (5‐CSRT) task, the dopamine transporter (DAT) knock‐out mouse, the SNAP‐25 deficient mutant coloboma mouse, mice expressing a human mutant thyroid hormone receptor, a nicotinic receptor knock‐out mouse, and a tachykinin‐1 (NK1) receptor knock‐out mouse. Chemically induced models of ADHD include prenatal or early postnatal exposure to ethanol, nicotine, polychlorinated biphenyls, or 6‐hydroxydopamine (6‐OHDA). Environmentally induced models have also been suggested; these include neonatal anoxia and rat pups reared in social isolation. The major insight provided by animal models was the consistency of findings regarding the involvement of dopaminergic, noradrenergic, and sometimes also serotonergic systems, as well as more fundamental defects in neurotransmission. Curr. Protoc. Neurosci. 54:9.35.1‐9.35.25. © 2011 by John Wiley & Sons, Inc.

Keywords: attention; deficit; hyperactivity; animal model; SHR

PDF or HTML at Wiley Online Library

Table of Contents

  • Attention‐Deficit/Hyperactivity Disorder
  • Animal Models of ADHD
  • Genetic Models of ADHD
  • Transgenic Models
  • Chemically Induced Models
  • Environmentally Induced Models
  • Nonhuman Primates
  • How have Animal Models Contributed to a Better Understanding of ADHD?
  • Conclusion
  • Acknowledgements
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Aase, H. and Sagvolden, T. 2005. Moment‐to‐moment dynamics of ADHD behavior. Behav. Brain Funct. 1:12.
  Aase, H. and Sagvolden, T. 2006. Infrequent, but not frequent, reinforcers produce more variable responding and deficient sustained attention in young children with attention‐deficit/hyperactivity disorder (ADHD). J. Child Psychol. Psychiatry 47:457‐471.
   Aase, H., Meyer, A., and Sagvolden, T. 2006. Moment‐to‐moment dynamics of ADHD behavior in South African children. Behav. Brain Funct. 2:11.
   Abikoff, H.B., Jensen, P.S., Arnold, L.L., Hoza, B., Hechtman, L., Pollack, S., Martin, D., Alvir, J., March, J.S., Hinshaw, S., Vitiello, B., Newcorn, J., Greiner, A., Cantwell, D.P., Conners, C.K., Elliott, G., Greenhill, L.L., Kraemer, H., Pelham, W.E., Jr., Severe, J.B., Swanson, J.M., Wells, K., and Wigal, T. 2002. Observed classroom behavior of children with ADHD: Relationship to gender and comorbidity. J. Abnorm. Child Psychol. 30:349‐359.
   Adriani, W., Boyer, F., Gioiosa, L., Macri, S., Dreyer, J.L., and Laviola, G. 2009. Increased impulsive behavior and risk proneness following lentivirus‐mediated dopamine transporter over‐expression in rats' nucleus accumbens. Neuroscience 159:47‐58.
   Alsop, B. 2007. Problems with spontaneously hypertensive rats (SHR) as a model of attention‐deficit/hyperactivity disorder (AD/HD). J. Neurosci. Methods 162:42‐48.
   American Psychiatric Association. 1994. Diagnostic and statistical manual of mental disorders: DSM‐IV. p. 78. American Psychiatric Association, Washington, D.C.
   Arnsten, A.F.T. 1998. Catecholamine modulation of prefrontal cortical cognitive function. Trends Cogn. Sci. 2:436‐447.
   Arnsten, A.F. 2006. Fundamentals of attention‐deficit/hyperactivity disorder: Circuits and pathways. J. Clin. Psychiatry 67:7‐12.
   Arnsten, A.F. and Dudley, A.G. 2005. Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: Relevance to therapeutic effects in attention deficit hyperactivity disorder. Behav. Brain Funct. 1:2.
   Barbelivien, A., Ruotsalainen, S., and Sirviö, J. 2001. Metabolic alterations in the prefrontal and cingulate cortices are related to behavioral deficits in a rodent model of attention‐deficit hyperactivity disorder. Cereb. Cortex 11:1056‐1063.
   Barr, A.M., Lehmann‐Masten, V., Paulus, M., Gainetdinov, R.R., Caron, M.G., and Geyer, M.A. 2004. The selective serotonin‐2A receptor antagonist M100907 reverses behavioral deficits in dopamine transporter knockout mice. Neuropsychopharmacology 29:221‐228.
   Barr, C.L., Feng, Y., Wigg, K., Bloom, S., Roberts, W., Malone, M., Schachar, R., Tannock, R., and Kennedy, J.L. 2000. Identification of DNA variants in the SNAP‐25 gene and linkage study of these polymorphisms and attention‐deficit hyperactivity disorder. Mol. Psychiatry 5:405‐409.
   Bendel, P. and Eilam, R. 1992. Quantitation of ventricular size in normal and spontaneously hypertensive rats by magnetic resonance imaging. Brain Res. 574:224‐228.
   Berger, D.F. and Sagvolden, T. 1998. Sex differences in operant discrimination behavior in an animal model of attention‐deficit hyperactivity disorder. Behav. Brain Res. 94:73‐82.
   Berger, D.F., Lombardo, J.P., Jeffers, P.M., Hunt, A.E., Bush, B., Casey, A., and Quimby, F. 2001. Hyperactivity and impulsiveness in rats fed diets supplemented with either Aroclor 1248 or PCB‐contaminated St. Lawrence river fish. Behav. Brain Res. 126:1‐11.
   Berridge, K.C., Aldridge, J.W., Houchard, K.R., and Zhuang, X. 2005. Sequential super‐stereotypy of an instinctive fixed action pattern in hyper‐dopaminergic mutant mice: A model of obsessive compulsive disorder and Tourette's. BMC Biol. 3:4.
   Biederman, J. and Faraone, S.V. 2005. Attention‐deficit hyperactivity disorder. Lancet 366:237‐248.
   Biederman, J., Spencer, T., and Wilens, T. 2004. Evidence‐based pharmacotherapy for attention‐deficit hyperactivity disorder. Int. J. Neuropharmacol. 7:77‐97.
   Bobb, A.J., Addington, A.M., Sidransky, E., Gornick, M.C., Lerch, J.P., Greenstein, D.K., Clasen, L.S., Sharp, W.S., Inoff‐Germain, G., Wavrant‐De, V.F., Marcos‐Burgos, M., Straub, R.E., Hardy, J.A., Castellanos, F.X., and Rapoport, J.L. 2005a. Support for association between ADHD and two candidate genes: NET1 and DRD1. Am. J. Med. Genet. B Neuropsychiatr. Genet. 134:67‐72.
   Bobb, A.J., Castellanos, F.X., Addington, A.M., and Rapoport, J.L. 2005b. Molecular genetic studies of ADHD: 1991 to 2004. Am. J. Med. Genet. B Neuropsychiatr. Genet. 132:109‐125.
   Boix, F., Qiao, S.‐W., Kolpus, T., and Sagvolden, T. 1998. Chronic L‐deprenyl treatment alters brain monoamine levels and reduces impulsiveness in an animal model of attention‐deficit/hyperactivity disorder. Behav. Brain Res. 94:153‐162.
   Brookes, K., Xu, X., Chen, W., Zhou, K., Neale, B., Lowe, N., Anney, R., Franke, B., Gill, M., Ebstein, R., Buitelaar, J., Sham, P., Campbell, D., Knight, J., Andreou, P., Altink, M., Arnold, R., Boer, F., Buschgens, C., Butler, L., Christiansen, H., Feldman, L., Fleischman, K., Fliers, E., Howe‐Forbes, R., Goldfarb, A., Heise, A., Gabriels, I., Korn‐Lubetzki, I., Johansson, L., Marco, R., Medad, S., Minderaa, R., Mulas, F., Muller, U., Mulligan, A., Rabin, K., Rommelse, N., Sethna, V., Sorohan, J., Uebel, H., Psychogiou, L., Weeks, A., Barrett, R., Craig, I., Banaschewski, T., Sonuga‐Barke, E., Eisenberg, J., Kuntsi, J., Manor, I., McGuffin, P., Miranda, A., Oades, R.D., Plomin, R., Roeyers, H., Rothenberger, A., Sergeant, J., Steinhausen, H.C., Taylor, E., Thompson, M., Faraone, S.V., and Asherson, P. 2006. The analysis of 51 genes in DSM‐IV combined type attention deficit hyperactivity disorder: Association signals in DRD4, DAT1 and 16 other genes. Mol. Psychiatry 11:934‐953.
   Bruno, K.J. and Hess, E.J. 2006. The alpha(2C)‐adrenergic receptor mediates hyperactivity of coloboma mice, a model of attention deficit hyperactivity disorder. Neurobiol. Dis. 23:679‐688.
   Bruno, K.J., Freet, C.S., Twining, R.C., Egami, K., Grigson, P.S., and Hess, E.J. 2007. Abnormal latent inhibition and impulsivity in coloboma mice, a model of ADHD. Neurobiol. Dis. 25:206‐216.
   Bull, E., Reavill, C., Hagan, J.J., Overend, P., and Jones, D.N. 2000. Evaluation of the spontaneously hypertensive rat as a model of attention deficit hyperactivity disorder: Acquisition and performance of the DRL‐60s test. Behav. Brain Res. 109:27‐35.
   Burd, L., Klug, M.G., Coumbe, M.J., and Kerbeshian, J. 2003. Children and adolescents with attention deficit‐hyperactivity disorder: 1. Prevalence and cost of care. J. Child Neurol. 18:555‐561.
   Bush, G. 2010. Attention‐deficit/hyperactivity disorder and attention networks. Neuropsychopharmacology 35:278‐300.
   Calzavara, M.B., Lopez, G.B., Abilio, V.C., Silva, R.H., and Frussa‐Filho, R. 2004. Role of anxiety levels in memory performance of spontaneously hypertensive rats. Behav. Pharmacol. 15:545‐553.
   Castellanos, F.X., Giedd, J.N., Marsh, W.L., Hamburger, S.D., Vaituzis, A.C., Dickstein, D.P., Sarfatti, S.E., Vauss, Y.C., Snell, J.W., Lange, N., Kaysen, D., Krain, A.L., Ritchie, G.F., Rajapakse, J.C., and Rapoport, J.L. 1996. Quantitative brain magnetic resonance imaging in attention‐deficit hyperactivity disorder. Arch. Gen. Psychiatry 53:607‐616.
   Castellanos, F.X., Lee, P.P., Sharp, W., Jeffries, N.O., Greenstein, D.K., Clasen, L.S., Blumenthal, J.D., James, R.S., Ebens, C.L., Walter, J.M., Zijdenbos, A., Evans, A.C., Giedd, J.N., and Rapoport, J.L. 2002. Developmental trajectories of brain volume abnormalities in children and adolescents with attention‐deficit/hyperactivity disorder. JAMA 288:1740‐1748.
   Chan, S.H., Tai, M.H., Li, C.Y., and Chan, J.Y. 2006. Reduction in molecular synthesis or enzyme activity of superoxide dismutases and catalase contributes to oxidative stress and neurogenic hypertension in spontaneously hypertensive rats. Free Radic. Biol. Med. 40:2028‐2039.
   Cheon, K.A., Ryu, Y.H., Kim, Y.K., Namkoong, K., Kim, C.H., and Lee, J.D. 2003. Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder. Eur. J. Nucl. Med. 30:306‐311.
   Cierpial, M.A., Shasby, D.E., Murphy, C.A., Borom, A.H., Stewart, R.E., Swithers, S.E., and McCarty, R. 1989. Open‐field behavior of spontaneously hypertensive and Wistar‐ Kyoto normotensive rats: Effects of reciprocal cross‐fostering. Behav. Neural Biol. 51:203‐210.
   Clark, L., Blackwell, A.D., Aron, A.R., Turner, D.C., Dowson, J., Robbins, T.W., and Sahakian, B.J. 2006. Association between response inhibition and working memory in adult ADHD: A link to right frontal cortex pathology? Biol. Psychiatry 61:1395‐1401.
   Clements, K.M. and Wainwright, P.E. 2006. Spontaneously hypertensive, Wistar‐Kyoto and Sprague‐Dawley rats differ in performance on a win‐shift task in the water radial arm maze. Behav. Brain Res. 167:295‐304.
   Cook, E.H. Jr., Stein, M.A., Krasowski, M.D., Cox, N.J., Olkon, D.M., Kieffer, J.E., and Leventhal, B.L. 1995. Association of attention‐deficit disorder and the dopamine transporter gene. Am. J. Hum. Genet. 56:993‐998.
   Dalley, J.W., Theobald, D.E., Pereira, E.A., Li, P.M., and Robbins, T.W. 2002. Specific abnormalities in serotonin release in the prefrontal cortex of isolation‐reared rats measured during behavioral performance of a task assessing visuospatial attention and impulsivity. Psychopharmacology (Berl.) 164:329‐340.
   Davids, E., Zhang, K., Kula, N.S., Tarazi, F.I., and Baldessarini, R.J. 2002. Effects of norepinephrine and serotonin transporter inhibitors on hyperactivity induced by neonatal 6‐hydroxydopamine lesioning in rats. J. Pharmacol. Exp. Ther. 301:1097‐1102.
   Davids, E., Zhang, K., Tarazi, F.I., and Baldessarini, R.J. 2003. Animal models of attention‐deficit hyperactivity disorder. Brain Res. Brain Res. Rev. 42:1‐21.
   De Jong, W., Linthorst, A.C., and Versteeg, H.G. 1995. The nigrostriatal dopamine system and the development of hypertension in the spontaneously hypertensive rat. Arch. Mal. Coeur Vaiss. 88:1193‐1196.
   Decamp, E. and Schneider, J.S. 2004. Attention and executive function deficits in chronic low‐dose MPTP‐treated non‐human primates. Eur. J. Neurosci. 20:1371‐1378.
   Decamp, E., Tinker, J.P., and Schneider, J.S. 2004. Attentional cueing reverses deficits in spatial working memory task performance in chronic low dose MPTP‐treated monkeys. Behav. Brain Res. 152:259‐262.
   Dell'Anna, M.E. 1999. Neonatal anoxia induces transitory hyperactivity, permanent spatial memory deficits and CA1 cell density reduction in developing rats. Behav. Brain Res. 45:125‐134.
   Dell'Anna, M.E., Luthman, J., Lindqvist, E., and Olson, L. 1993. Development of monoamine systems after neonatal anoxia in rats. Brain Res. Bull. 32:159‐170.
   Dickstein, S.G., Bannon, K., Xavier, C.F., and Milham, M.P. 2006. The neural correlates of attention deficit hyperactivity disorder: An ALE meta‐analysis. J. Child Psychol. Psychiatry 47:1051‐1062.
   Doroshchuk, A.D., Postnov, A.I., Afanas'eva, G.V., Budnikov, E.I., and Postnov, I. 2004. Decreased ATP‐synthesis ability of brain mitochondria in spontaneously hypertensive rats. Kardiologiia 44:64‐65.
   Dougherty, D.D., Bonab, A.A., Spencer, T.J., Rauch, S.L., Madras, B.K., and Fischman, A.J. 1999. Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet 354:2132‐2133.
   Durston, S., Hulshoff Pol, H.E., Schnack, H.G., Buitelaar, J.K., Steenhuis, M.P., Minderaa, R.B., Kahn, R.S., and van Engeland, H. 2004. Magnetic resonance imaging of boys with attention‐deficit/hyperactivity disorder and their unaffected siblings. J. Am. Acad. Child Adolesc. Psychiatry 43:332‐340.
   Durston, S., Fossella, J.A., Casey, B.J., Hulshoff Pol, H.E., Galvan, A., Schnack, H.G., Steenhuis, M.P., Minderaa, R.B., Buitelaar, J.K., Kahn, R.S., and van Engeland, H. 2005. Differential effects of DRD4 and DAT1 genotype on fronto‐striatal gray matter volumes in a sample of subjects with attention deficit hyperactivity disorder, their unaffected siblings, and controls. Mol. Psychiatry 10:678‐685.
   Easton, N., Shah, Y.B., Marshall, F.H., Fone, K.C., and Marsden, C.A. 2006. Guanfacine produces differential effects in frontal cortex compared with striatum: Assessed by phMRI BOLD contrast. Psychopharmacology (Berl.) 189:369‐385.
   El‐Faddagh, M., Laucht, M., Maras, A., Vohringer, L., and Schmidt, M.H. 2004. Association of dopamine D4 receptor (DRD4) gene with attention‐deficit/hyperactivity disorder (ADHD) in a high‐risk community sample: A longitudinal study from birth to 11 years of age. J. Neural Transm. 111:883‐889.
   Elia, J., Arcos‐Burgos, M., Bolton, K.L., Ambrosini, P.J., Berrettini, W., and Muenke, M. 2009. ADHD latent class clusters: DSM‐IV subtypes and comorbidity. Psychiatry Res. 170:192‐198.
   Ernst, M., Zametkin, A.J., Matochik, J.A., Jons, P.H., and Cohen, R.M. 1998. DOPA decarboxylase activity in attention deficit hyperactivity disorder adults. A [fluorine‐18]fluorodopa positron emission tomographic study. J. Neurosci. 18:5901‐5907.
   Ernst, M., Zametkin, A.J., Matochik, J.A., Pascualvaca, D., Jons, P.H., and Cohen, R.M. 1999. High midbrain [18F]DOPA accumulation in children with attention deficit hyperactivity disorder. Am. J. Psychiatry 156:1209‐1215.
   Faraone, S.V. 2004. Genetics of adult attention‐deficit/hyperactivity disorder. Psychiatr. Clin. North Am. 27:303‐321.
   Faraone, S.V. and Khan, S.A. 2006. Candidate gene studies of attention‐deficit/hyperactivity disorder. J. Clin. Psychiatry 67:13‐20.
   Faraone, S.V., Doyle, A.E., Mick, E., and Biederman, J. 2001. Meta‐analysis of the association between the 7‐repeat allele of the dopamine D(4) receptor gene and attention deficit hyperactivity disorder. Am. J. Psychiatry 158:1052‐1057.
   Faraone, S.V., Sergeant, J., Gillberg, C., and Biederman, J. 2003. The worldwide prevalence of ADHD: Is it an American condition? World Psychiatry 2:104‐113.
   Faraone, S.V., Perlis, R.H., Doyle, A.E., Smoller, J.W., Goralnick, J.J., Holmgren, M.A., and Sklar, P. 2005. Molecular genetics of attention‐deficit/hyperactivity disorder. Biol. Psychiatry 57:1313‐1323.
   Fellner, S.K. and Arendshorst, W.J. 2002. Store‐operated Ca2+ entry is exaggerated in fresh preglomerular vascular smooth muscle cells of SHR. Kidney Int. 61:2132‐2141.
   Ferguson, S.A. and Cada, A.M. 2004. Spatial learning/memory and social and nonsocial behaviors in the spontaneously hypertensive, Wistar‐Kyoto and Sprague‐Dawley rat strains. Pharmacol. Biochem. Behav. 77:583‐594.
   Filipek, P.A., Semrud‐Clikeman, M., Steingard, R.J., Renshaw, P.F., Kennedy, D.N., and Biederman, J. 1997. Volumetric MRI analysis comparing subjects having attention‐deficit hyperactivity disorder with normal controls. Neurology 48:589‐601.
   Gainetdinov, R.R. and Caron, M.G. 2000. An animal model of attention deficit hyperactivity disorder. Mol. Med. Today 6:43‐44.
   Gainetdinov, R.R. and Caron, M.G. 2001. Genetics of childhood disorders: XXIV. ADHD, Part 8: hyperdopaminergic mice as an animal model of ADHD. J. Am. Acad. Child Adolesc. Psychiatry 40:380‐382.
   Gainetdinov, R.R., Jones, S.R., and Caron, M.G. 1999. Functional hyperdopaminergia in dopamine transporter knock‐out mice. Biol. Psychiatry 46:303‐311.
   Genro, J.P., Zeni, C., Polanczyk, G.V., Roman, T., Rohde, L.A., and Hutz, M.H. 2006. A promoter polymorphism (‐839 C > T) at the dopamine transporter gene is associated with attention deficit/hyperactivity disorder in Brazilian children. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144B:215‐219.
   Gibson, M.A., Butters, N.S., Reynolds, J.N., and Brien, J.F. 2000. Effects of chronic prenatal ethanol exposure on locomotor activity, and hippocampal weight, neurons, and nitric oxide synthase activity of the young postnatal guinea pig. Neurotoxicol. Teratol. 22:183‐192.
   Gizer, I.R., Ficks, C., and Waldman, I.D. 2009. Candidate gene studies of ADHD: A meta‐analytic review. Hum. Genet. 126:51‐90.
   Gornick, M.C., Addington, A., Shaw, P., Bobb, A.J., Sharp, W., Greenstein, D., Arepalli, S., Castellanos, F.X., and Rapoport, J.L. 2007. Association of the dopamine receptor D4 (DRD4) gene 7‐repeat allele with children with attention‐deficit/hyperactivity disorder (ADHD): An update. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144B:379‐382.
   Granon, S. and Changeux, J.P. 2006. Attention‐deficit/hyperactivity disorder: A plausible mouse model? Acta Paediatr. 95:645‐649.
   Granon, S., Passetti, F., Thomas, K.L., Dalley, J.W., Everitt, B.J., and Robbins, T.W. 2000. Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J. Neurosci. 20:1208‐1215.
   Gross, J., Muller, I., Chen, Y., Elizalde, M., Leclere, N., Herrera‐Marschitz, M., and Andersson, K. 2000. Perinatal asphyxia induces region‐specific long‐term changes in mRNA levels of tyrosine hydroxylase and dopamine D(1) and D(2) receptors in rat brain. Brain Res. Mol. Brain Res. 79:110‐117.
   Hand, D.J., Fox, A.T., and Reilly, M.P. 2006. Response acquisition with delayed reinforcement in a rodent model of attention‐deficit/hyperactivity disorder (ADHD). Behav. Brain Res. 175:337‐342.
   Hausknecht, K.A., Acheson, A., Farrar, A.M., Kieres, A.K., Shen, R.Y., Richards, J.B., and Sabol, K.E. 2005. Prenatal alcohol exposure causes attention deficits in male rats. Behav. Neurosci. 119:302‐310.
   Hernandez, C.M., Hoifodt, H., and Terry, A.V. Jr. 2003. Spontaneously hypertensive rats: further evaluation of age‐related memory performance and cholinergic marker expression. J. Psychiatry Neurosci. 28:197‐209.
   Hess, E.J., Collins, K.A., and Wilson, M.C. 1996. Mouse model of hyperkinesis implicates SNAP‐25 in behavioral regulation. J. Neurosci. 16:3104‐3111.
   Hewitt, K.N., Marsden, C.A., Hollis, C.P., and Fone, K.C. 2009. Behavioral characterisation of the effects of acute and repeated administration of GBR 12909 in rats: Further evaluation of a potential model of ADHD. Neuropharmacology 57:678‐686.
   Hill, D.E., Yeo, R.A., Campbell, R.A., Hart, B., Vigil, J., and Brooks, W. 2003. Magnetic resonance imaging correlates of attention‐deficit/hyperactivity disorder in children. Neuropsychology 17:496‐506.
   Hironaka, N., Ikeda, K., Sora, I., Uhl, G.R., and Niki, H. 2004. Food‐reinforced operant behavior in dopamine transporter knockout mice: Enhanced resistance to extinction. Ann. N.Y. Acad. Sci. 1025:140‐145.
   Hong, Q., Zhang, M., Pan, X.Q., Guo, M., Li, F., Tong, M.L., Chen, R.H., Guo, X.R., and Chi, X. 2009. Prefrontal cortex Homer expression in an animal model of attention‐deficit/hyperactivity disorder. J. Neurol. Sci. 287:205‐211.
   Horn, J.L., Janicki, P.K., and Franks, J.J. 1995. Diminished brain synaptic plasma membrane Ca(2+)‐ATPase activity in spontaneously hypertensive rats: Association with reduced anesthetic requirements. Life Sci. 56:L427‐L432.
   Howells, F.M. and Russell, V.A. 2008. Glutamate‐stimulated release of norepinephrine in hippocampal slices of animal models of attention‐deficit/hyperactivity disorder (spontaneously hypertensive rat) and depression/anxiety‐like behaviors (Wistar‐Kyoto rat). Brain Res. 1200:107‐115.
   Howells, F.M., Russell, V.A., Mabandla, M.V., and Kellaway, L.A. 2005. Stress reduces the neuroprotective effect of exercise in a rat model for Parkinson's disease. Behav. Brain Res. 165:210‐220.
   Howells, F.M., Bindewald, L., and Russell, V.A. 2009. Cross‐fostering does not alter the neurochemistry or behavior of spontaneously hypertensive rats. Behav. Brain Funct. 5:24.
   Iuvone, L., Geloso, M.C., and Dell'Anna, E. 1996. Changes in open field behavior, spatial memory, and hippocampal parvalbumin immunoreactivity following enrichment in rats exposed to neonatal anoxia. Exp. Neurol. 139:25‐33.
   Jensen, V., Rinholm, J.E., Johansen, T.J., Medin, T., Storm‐Mathisen, J., Sagvolden, T., Hvalby, O., and Bergersen, L.H. 2009. N‐methyl‐D‐aspartate receptor subunit dysfunction at hippocampal glutamatergic synapses in an animal model of attention‐deficit/hyperactivity disorder. Neuroscience 158:353‐364.
   Johansen, E.B. and Sagvolden, T. 2005a. Evidence for an extinction deficit in an animal model of attention‐deficit/hyperactivity disorder. 162:22‐31.
   Johansen, E.B. and Sagvolden, T. 2005b. Slower extinction of responses maintained by intra‐cranial self‐stimulation (ICSS) in an animal model of attention‐deficit/hyperactivity disorder (ADHD). Behav. Brain Res. 162:22‐31.
   Johansen, E.B., Sagvolden, T., and Kvande, G. 2005. Effects of delayed reinforcers on the behavior of an animal model of attention‐deficit/hyperactivity disorder (ADHD). Behav. Brain Res. 162:47‐61.
   Johansen, E.B., Killeen, P.R., and Sagvolden, T. 2007. Behavioral variability, elimination of responses, and delay‐of‐reinforcement gradients in SHR and WKY rats. Behav. Brain Funct. 3:60.
   Johansen, E.B., Killeen, P.R., Russell, V.A., Tripp, G., Wickens, J.R., Tannock, R., Williams, J., and Sagvolden, T. 2009. Origins of altered reinforcement effects in ADHD. Behav. Brain Funct. 5:7.
   Jones, M.D. and Hess, E.J. 2003. Norepinephrine regulates locomotor hyperactivity in the mouse mutant coloboma. Pharmacol. Biochem. Behav. 75:209‐216.
   Jones, M.D., Williams, M.E., and Hess, E.J. 2001a. Abnormal presynaptic catecholamine regulation in a hyperactive SNAP‐25‐deficient mouse mutant. Pharmacol. Biochem. Behav. 68:669‐676.
   Jones, M.D., Williams, M.E., and Hess, E.J. 2001b. Expression of catecholaminergic mRNAs in the hyperactive mouse mutant coloboma. Brain Res. Mol. Brain Res. 96:114‐121.
   Jones, S.R., Gainetdinov, R.R., Jaber, M., Giros, B., Wightman, R.M., and Caron, M.G. 1998. Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc. Natl. Acad. Sci. U.S.A. 95:4029‐4034.
   Jucaite, A., Fernell, E., Halldin, C., Forssberg, H., and Farde, L. 2005. Reduced midbrain dopamine transporter binding in male adolescents with attention‐deficit/hyperactivity disorder: Association between striatal dopamine markers and motor hyperactivity. Biol. Psychiatry 57:229‐238.
   Kim, B.N., Lee, J.S., Shin, M.S., Cho, S.C., and Lee, D.S. 2002. Regional cerebral perfusion abnormalities in attention deficit/hyperactivity disorder: Statistical parametric mapping analysis. Eur. Arch. Psychiatry Clin. Neurosci. 252:219‐225.
   Kim, C.H., Hahn, M.K., Joung, Y., Anderson, S.L., Steele, A.H., Mazei‐Robinson, M.S., Gizer, I., Teicher, M.H., Cohen, B.M., Robertson, D., Waldman, I.D., Blakely, R.D., and Kim, K.S. 2006. A polymorphism in the norepinephrine transporter gene alters promoter activity and is associated with attention‐deficit hyperactivity disorder. Proc. Natl. Acad. Sci. U.S.A. 103:19164‐19169.
   Kirley, A., Lowe, N., Hawi, Z., Mullins, C., Daly, G., Waldman, I., McCarron, M., O'Donnell, D., Fitzgerald, M., and Gill, M. 2003. Association of the 480 bp DAT1 allele with methylphenidate response in a sample of Irish children with ADHD. Am. J. Med. Genet. B Neuropsychiatr. Genet. 121:50‐54.
   Koike, H., Ibi, D., Mizoguchi, H., Nagai, T., Nitta, A., Takuma, K., Nabeshima, T., Yoneda, Y., and Yamada, K. 2009. Behavioral abnormality and pharmacologic response in social isolation‐reared mice. Behav. Brain Res. 202:114‐121.
   Krause, K.H., Dresel, S.H., Krause, J., Kung, H.F., and Tatsch, K. 2000. Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: Effects of methylphenidate as measured by single photon emission computed tomography. Neurosci. Lett. 285:107‐110.
   LaHoste, G.J., Swanson, J.M., Wigal, S.B., Glabe, C., Wigal, T., King, N., and Kennedy, J.L. 1996. Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. Mol. Psychiatry 1:121‐124.
   Lehohla, M., Russell, V., and Kellaway, L. 2001. NMDA‐stimulated Ca2+ uptake into barrel cortex slices of spontaneously hypertensive rats. Metab. Brain Dis. 16:133‐141.
   Lehohla, M., Kellaway, L., and Russell, V. 2004. NMDA receptor function in the prefrontal cortex of a rat model for attention‐deficit hyperactivity disorder. Metab. Brain Dis. 19:35‐42.
   Leo, D., Sorrentino, E., Volpicelli, F., Eyman, M., Greco, D., Viggiano, D., di, P.U., and Perrone‐Capano, C. 2003. Altered midbrain dopaminergic neurotransmission during development in an animal model of ADHD. Neurosci. Biobehav. Rev. 27:661‐669.
   Levitan, R.D., Masellis, M., Basile, V.S., Lam, R.W., Jain, U., Kaplan, A.S., Kennedy, S.H., Siegel, G., Walker, M.L., Vaccarino, F.J., and Kennedy, J.L. 2002. Polymorphism of the serotonin‐2A receptor gene (HTR2A) associated with childhood attention deficit hyperactivity disorder (ADHD) in adult women with seasonal affective disorder. J. Affect. Disord. 71:229‐233.
   Li, S., Tian, X., Hartley, D.M., and Feig, L.A. 2006. The environment versus genetics in controlling the contribution of MAP kinases to synaptic plasticity. Curr. Biol. 16:2303‐2313.
   Lou, H.C. 1996. Etiology and pathogenesis of attention‐deficit hyperactivity disorder (ADHD): Significance of prematurity and perinatal hypoxic‐haemodynamic encephalopathy. Acta Paediatr. 85:1266‐1271.
   Luthman, J., Fredriksson, A., Lewander, T., Jonsson, G., and Archer, T. 1989. Effects of D‐amphetamine and methylphenidate on hyperactivity produced by neonatal 6‐hydroxydopamine treatment. Psychopharmacology (Berl.) 99:550‐557.
   Maher, B.S., Marazita, M.L., Ferrell, R.E., and Vanyukov, M.M. 2002. Dopamine system genes and attention deficit hyperactivity disorder: A meta‐analysis. Psychiatr. Genet. 12:207‐215.
   Manor, I., Corbex, M., Eisenberg, J., Gritsenkso, I., Bachner‐Melman, R., Tyano, S., and Ebstein, R.P. 2004. Association of the dopamine D5 receptor with attention deficit hyperactivity disorder (ADHD) and scores on a continuous performance test (TOVA). Am. J. Med. Genet. B Neuropsychiatr. Genet. 127:73‐77.
   McKinney, W.T. Jr. and Bunney, W.E. Jr. 1969. Animal model of depression. I. Review of evidence: Implications for research. Arch. Gen. Psychiatry 21:240‐248.
   Mick, E., Biederman, J., Faraone, S.V., Sayer, J., and Kleinman, S. 2002. Case‐control study of attention‐deficit hyperactivity disorder and maternal smoking, alcohol use, and drug use during pregnancy. J. Am. Acad. Child Adolesc. Psychiatry 41:378‐385.
   Mignini, F., Vitaioli, L., Sabbatini, M., Tomassoni, D., and Amenta, F. 2004. The cerebral cortex of spontaneously hypertensive rats: A quantitative microanatomical study. Clin. Exp. Hypertens. 26:287‐303.
   Milberger, S., Biederman, J., Faraone, S.V., and Jones, J. 1998. Further evidence of an association between maternal smoking during pregnancy and attention deficit hyperactivity disorder: Findings from a high‐risk sample of siblings. J. Clin. Child Psychol. 27:352‐358.
   Mill, J., Curran, S., Kent, L., Gould, A., Huckett, L., Richards, S., Taylor, E., and Asherson, P. 2002. Association study of a SNAP‐25 microsatellite and attention deficit hyperactivity disorder. Am. J. Med. Genet. 114:269‐271.
   Mill, J., Sagvolden, T., and Asherson, P. 2005. Sequence analysis of Drd2, Drd4, and Dat1 in SHR and WKY rat strains. Behav. Brain Funct. 1:24.
   Moll, G.H., Heinrich, H., Trott, G., Wirth, S., and Rothenberger, A. 2000. Deficient intracortical inhibition in drug‐naive children with attention‐deficit hyperactivity disorder is enhanced by methylphenidate. Neurosci. Lett. 284:121‐125.
   Nakamura‐Palacios, E.M., Caldas, C.K., Fiorini, A., Chagas, K.D., Chagas, K.N., and Vasquez, E.C. 1996. Deficits of spatial learning and working memory in spontaneously hypertensive rats. Behav. Brain Res. 74:217‐227.
   Neuman, R.J., Lobos, E., Reich, W., Henderson, C.A., Sun, L.W., and Todd, R.D. 2007. Prenatal smoking exposure and dopaminergic genotypes interact to cause a severe ADHD subtype. Biol. Psychiatry 61:1320‐1328.
   Nurse, B., Russell, V.A., and Taljaard, J.J. 1984. Alpha‐ and beta‐adrenoceptor agonists modulate [3H]dopamine release from rat nucleus accumbens slices: Implications for research into depression. Neurochem. Res. 9:1231‐1238.
   Ohno, Y., Matsuo, K., Suzuki, H., Tanase, H., Serikawa, T., Takano, T., and Saruta, T. 1996. Genetic linkage of the sarco(endo)plasmic reticulum Ca(2+)‐dependent ATPase II gene to intracellular Ca2+ concentration in the spontaneously hypertensive rat. Biochem. Biophys. Res. Commun. 227:789‐793.
   Ohno, Y., Matsuo, K., Suzuki, H., Tanase, H., Takano, T., and Saruta, T. 1997. Increased intracellular Ca2+ is not coinherited with an inferred major gene locus for hypertension (ht) in the spontaneously hypertensive rat. Am. J. Hypertens. 10:282‐288.
   Ohno, Y., Suzuki, H., Tanase, H., Otsuka, K., Sasaki, T., Suzawa, T., Morii, T., Ando, Y., Maruyama, T., and Saruta, T. 2005. Quantitative trait loci mapping for intracellular calcium in spontaneously hypertensive rats. Am. J. Hypertens. 18:666‐671.
   Okamoto, K. and Aoki, K. 1963. Development of a strain of spontaneously hypertensive rats. Jpn. Circ. J. 27:282‐293.
   Oshima, T., Young, E.W., and McCarron, D.A. 1991. Abnormal platelet and lymphocyte calcium handling in prehypertensive rats. Hypertension 18:111‐115.
   Pamplona, F.A., Pandolfo, P., Savoldi, R., Prediger, R.D., and Takahashi, R.N. 2009. Environmental enrichment improves cognitive deficits in spontaneously hypertensive rats (SHR): Relevance for attention deficit/hyperactivity disorder (ADHD). Prog. Neuropsychopharmacol. Biol. Psychiatry 33:1153‐1160.
   Pardey, M.C., Homewood, J., Taylor, A., and Cornish, J.L. 2009. Re‐evaluation of an animal model for ADHD using a free‐operant choice task. J. Neurosci. Methods 176:166‐171.
   Park, L., Nigg, J.T., Waldman, I.D., Nummy, K.A., Huang‐Pollock, C., Rappley, M., and Friderici, K.H. 2005. Association and linkage of alpha‐2A adrenergic receptor gene polymorphisms with childhood ADHD. Mol. Psychiatry 10:572‐580.
   Paz, R., Barsness, B., Martenson, T., Tanner, D., and Allan, A.M. 2006. Behavioral teratogenicity Induced by nonforced maternal nicotine consumption. Neuropsychopharmacology 32:693‐699.
   Pires, V.A., Pamplona, F.A., Pandolfo, P., Fernandes, D., Prediger, R.D., and Takahashi, R.N. 2009. Adenosine receptor antagonists improve short‐term object‐recognition ability of spontaneously hypertensive rats: A rodent model of attention‐deficit hyperactivity disorder. Behav. Pharmacol. 20:134‐145.
   Prediger, R.D., Pamplona, F.A., Fernandes, D., and Takahashi, R.N. 2005. Caffeine improves spatial learning deficits in an animal model of attention deficit hyperactivity disorder (ADHD)—the spontaneously hypertensive rat (SHR). Int. J. Neuropsychopharmacol. 8:583‐594.
   Printz, M.P., Jirout, M., Jaworski, R., Alemayehu, A., and Kren, V. 2003. Genetic models in applied physiology. HXB/BXH rat recombinant inbred strain platform: A newly enhanced tool for cardiovascular, behavioral, and developmental genetics and genomics. J. Appl. Physiol. 94:2510‐2522.
   Puumala, T., Ruotsalainen, S., Jakala, P., Koivisto, E., Riekkinen, P., Jr., and Sirviö, J. 1996. Behavioral and pharmacological studies on the validation of a new animal model for attention deficit hyperactivity disorder. Neurobiol. Learn. Mem. 66:198‐211.
   Quist, J.F., Barr, C.L., Schachar, R., Roberts, W., Malone, M., Tannock, R., Basile, V.S., Beitchman, J., and Kennedy, J.L. 2000. Evidence for the serotonin HTR2A receptor gene as a susceptibility factor in attention deficit hyperactivity disorder (ADHD). Mol. Psychiatry 5:537‐541.
   Raber, J., Mehta, P.P., Kreifeldt, M., Parsons, L.H., Weiss, F., Bloom, F.E., and Wilson, M.C. 1997. Coloboma hyperactive mutant mice exhibit regional and transmitter—specific deficits in neurotransmission. J. Neurochem. 68:176‐186.
   Rastogi, R.B. and Singhal, R.L. 1976. Influence of neonatal and adult hyperthyroidism on behavior and biosynthetic capacity for norepinephrine, dopamine and 5‐hydroxytryptamine in rat brain. J. Pharmacol. Exp. Ther. 198:609‐618.
   Robbins, T.W. 2002. The 5‐choice serial reaction time task: behavioral pharmacology and functional neurochemistry. Psychopharmacology (Berl.) 163:362‐380.
   Roeltgen, D.P. and Schneider, J.S. 1991. Chronic low‐dose MPTP in nonhuman primates: A possible model for attention deficit disorder. J. Child Neurol. 6:S82‐S89.
   Roeltgen, D.P. and Schneider, J.S. 1994. Task persistence and learning ability in normal and chronic low dose MPTP‐treated monkeys. Behav. Brain Res. 60:115‐124.
   Romano, E., Tremblay, R.E., Farhat, A., and Cote, S. 2006. Development and prediction of hyperactive symptoms from 2 to 7 years in a population‐based sample. Pediatrics 117:2101‐2110.
   Rubia, K., Overmeyer, S., Taylor, E., Brammer, M., Williams, S.C., Simmons, A., and Bullmore, E.T. 1999. Hypofrontality in attention deficit hyperactivity disorder during higher‐order motor control: A study with functional MRI. Am. J. Psychiatry 156:891‐896.
   Ruocco, L.A., de Souza Silva, M.A., Topic, B., Mattern, C., Huston, J.P., and Sadile, A.G. 2009a. Intranasal application of dopamine reduces activity and improves attention in Naples high excitability rats that feature the mesocortical variant of ADHD. Eur. Neuropsychopharmacol. 19:693‐701.
   Ruocco, L.A., Gironi Carnevale, U.A., Sadile, A.G., Sica, A., Arra, C., Di, M.A., Topo, E., and D'Aniello, A. 2009b. Elevated forebrain excitatory L‐glutamate, L‐aspartate and D‐aspartate in the Naples high‐excitability rats. Behav. Brain Res. 198:24‐28.
   Russell, V.A. 2001. Increased AMPA receptor function in slices containing the prefrontal cortex of spontaneously hypertensive rats. Metab. Brain Dis. 16:143‐149.
   Russell, V.A. 2002. Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention‐deficit hyperactivity disorder—the spontaneously hypertensive rat. Behav. Brain Res. 130:191‐196.
   Russell, V.A. 2007. Reprint of “Neurobiology of animal models of attention‐deficit hyperactivity disorder.” J. Neurosci. Methods 166:I‐XIV.
   Russell, V.A. and Wiggins, T.M. 2000. Increased glutamate‐stimulated norepinephrine release from prefrontal cortex slices of spontaneously hypertensive rats. Metab. Brain Dis. 15:297‐304.
   Russell, V., Allie, S., and Wiggins, T. 2000. Increased noradrenergic activity in prefrontal cortex slices of an animal model for attention‐deficit hyperactivity disorder—the spontaneously hypertensive rat. Behav. Brain Res. 117:69‐74.
   Russell, V.A., Sagvolden, T., and Johansen, E.B. 2005. Animal models of attention‐deficit hyperactivity disorder. Behav. Brain Funct. 1:9.
   Russell, V.A., Oades, R.D., Tannock, R., Killeen, P.R., Auerbach, J.G., Johansen, E.B., and Sagvolden, T. 2006. Response variability in attention‐deficit hyperactivity disorder: A neuronal and glial energetics hypothesis. Behav. Brain Funct. 2:30.
   Sabbatini, M., Strocchi, P., Vitaioli, L., and Amenta, F. 2000. The hippocampus in spontaneously hypertensive rats: A quantitative microanatomical study. Neuroscience 100:251‐258.
   Sadile, A.G. 1993. What can genetic models tell us about behavioral plasticity? Neuroscience 4:287‐303.
   Sadile, A.G., Gironi Carnevale, U.A., Vitullo, E., Cioffi, L.A., Welzl, H., and Bättig, K. 1988. Maze learning of the Naples high‐and low‐excitability rat lines. Adv. Biosci. 70:177‐180.
   Sagvolden, T. 2000. Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention‐deficit/hyperactivity disorder (AD/HD). Neurosci. Biobehav. Rev. 24:31‐39.
   Sagvolden, T. 2006. The alpha‐2A adrenoceptor agonist guanfacine improves sustained attention and reduces overactivity and impulsiveness in an animal model of attention‐deficit/hyperactivity disorder (ADHD). Behav. Brain Funct. 2:41.
   Sagvolden, T. and Sergeant, J.A. 1998. Attention deficit/hyperactivity disorder—from brain dysfunctions to behavior. Behav. Brain Res. 94:1‐10.
   Sagvolden, T. and Xu, T. 2008. L‐Amphetamine improves poor sustained attention while D‐amphetamine reduces overactivity and impulsiveness as well as improves sustained attention in an animal model of attention‐deficit/hyperactivity disorder (ADHD). Behav. Brain Funct. 4:3.
   Sagvolden, T., Pettersen, M.B., and Larsen, M.C. 1993. Spontaneously hypertensive rats (SHR) as a putative animal model of childhood hyperkinesis: SHR behavior compared to four other rat strains. Physiol. Behav. 54:1047‐1055.
   Sagvolden, T., Aase, H., Zeiner, P., and Berger, D.F. 1998. Altered reinforcement mechanisms in attention‐deficit/hyperactivity disorder. Behav. Brain Res. 94:61‐71.
   Sagvolden, T., Johansen, E.B., Aase, H., and Russell, V.A. 2005a. A dynamic developmental theory of attention‐deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav. Brain Sci. 28:397‐419.
   Sagvolden, T., Russell, V.A., Aase, H., Johansen, E.B., and Farshbaf, M. 2005b. Rodent models of attention‐deficit/hyperactivity disorder. Biol. Psychiatry 57:1239‐1247.
   Sagvolden, T., DasBanerjee, T., Zhang‐James, Y., Middleton, F.A., and Faraone, S.V. 2008. Behavioral and genetic evidence for a novel animal model of attention‐deficit/hyperactivity disorder predominantly inattentive subtype. Behav. Brain Funct. 4:56.
   Sagvolden, T., Johansen, E.B., Woien, G., Walaas, S.I., Storm‐Mathisen, J., Bergersen, L.H., Hvalby, O., Jensen, V., Aase, H., Russell, V.A., Killeen, P.R., Dasbanerjee, T., Middleton, F.A., and Faraone, S.V. 2009. The spontaneously hypertensive rat model of ADHD—the importance of selecting the appropriate reference strain. Neuropharmacology 57:619‐626.
   Scheres, A., Milham, M.P., Knutson, B., and Castellanos, F.X. 2007. Ventral striatal hyporesponsiveness during reward anticipation in attention‐deficit/hyperactivity disorder. Biol. Psychiatry 61:720‐724.
   Schmitz, M., Denardin, D., Laufer, S.T., Pianca, T., Hutz, M.H., Faraone, S., and Rohde, L.A. 2006. Smoking during pregnancy and attention‐deficit/hyperactivity disorder, predominantly inattentive type: A case‐control study. J Am. Acad. Child Adolesc. Psychiatry 45:1338‐1345.
   Schneider, J.S., Sun, Z.Q., and Roeltgen, D.P. 1994. Effects of dopamine agonists on delayed response performance in chronic low‐dose MPTP‐treated monkeys. Pharmacol. Biochem. Behav. 48:235‐240.
   Shaywitz, B.A., Klopper, J.H., and Gordon, J.W. 1978. Methylphenidate in 6‐hydroxydopamine‐treated developing rat pups: Effects on activity and maze performance. Arch. Neurol. 35:463‐469.
   Siesser, W.B., Zhao, J., Miller, L.R., Cheng, S.Y., and McDonald, M.P. 2006. Transgenic mice expressing a human mutant beta1 thyroid receptor are hyperactive, impulsive, and inattentive. Genes Brain Behav. 5:282‐297.
   Sleator, E.K. and Ullman, R.K. 1981. Can a physician diagnose hyperactivity in the office? Pediatrics 67:13‐17.
   Smalley, S.L. 1997. Genetic influences in childhood‐onset psychiatric disorders: Autism and attention‐deficit/hyperactivity disorder. Am. J. Hum. Genet. 60:1276‐1282.
   Sonuga‐Barke, E.J. and Taylor, E. 1992. The effect of delay on hyperactive and non‐hyperactive children's response times: A research note. J. Child Psychol. Psychiatry 33:1091‐1096.
   Sutherland, K.R., Alsop, B., McNaughton, N., Hyland, B.I., Tripp, G., and Wickens, J.R. 2009. Sensitivity to delay of reinforcement in two animal models of attention deficit hyperactivity disorder (ADHD). Behav. Brain Res. 205:372‐376.
   Tabet, F., Savoia, C., Schiffrin, E.L., and Touyz, R.M. 2004. Differential calcium regulation by hydrogen peroxide and superoxide in vascular smooth muscle cells from spontaneously hypertensive rats. J. Cardiovasc. Pharmacol. 44:200‐208.
   Tannock, R. 1998. Attention deficit hyperactivity disorder: Advances in cognitive, neurobiological, and genetic research. J. Child Psychol. Psychiatry 39:65‐99.
   Taylor, E., Sergeant, J., Doepfner, M., Gunning, B., Overmeyer, S., Mobius, H.J., and Eisert, H.G. 1998. Clinical guidelines for hyperkinetic disorder. European Society for Child and Adolescent Psychiatry. Eur. Child Adolesc. Psychiatry 7:184‐200.
   Thapar, A., Fowler, T., Rice, F., Scourfield, J., van den, B.M., Thomas, H., Harold, G., and Hay, D. 2003. Maternal smoking during pregnancy and attention deficit hyperactivity disorder symptoms in offspring. Am. J. Psychiatry 160:1985‐1989.
   Thapar, A., O'Donovan, M., and Owen, M.J. 2005. The genetics of attention deficit hyperactivity disorder. Hum. Mol. Genet. 14:R275‐R282.
   Thapar, A., Langley, K., Asherson, P., and Gill, M. 2007. Gene‐environment interplay in attention‐deficit hyperactivity disorder and the importance of a developmental perspective. Br. J. Psychiatry 190:1‐3.
   Tomassoni, D., Bellagamba, G., Postacchini, D., Venarucci, D., and Amenta, F. 2004. Cerebrovascular and brain microanatomy in spontaneously hypertensive rats with streptozotocin‐induced diabetes. Clin. Exp. Hypertens. 26:305‐321.
   Trinh, J.V., Nehrenberg, D.L., Jacobsen, J.P., Caron, M.G., and Wetsel, W.C. 2003. Differential psychostimulant‐induced activation of neural circuits in dopamine transporter knockout and wild type mice. Neuroscience 118:297‐310.
   Tsuda, K., Tsuda, S., and Nishio, I. 2003. Role of protein kinase C in the regulation of acetylcholine release in the central nervous system of spontaneously hypertensive rats. J. Cardiovasc. Pharmacol. 41:S57‐S60.
   Ueno, K., Togashi, H., Matsumoto, M., Ohashi, S., Saito, H., and Yoshioka, M. 2002. Alpha4beta2 nicotinic acetylcholine receptor activation ameliorates impairment of spontaneous alternation behavior in stroke‐prone spontaneously hypertensive rats: An animal model of attention deficit hyperactivity disorder. J. Pharmacol. Exp. Ther. 302:95‐100.
   Vaidya, C.J., Austin, G., Kirkorian, G., Ridlehuber, H.W., Desmond, J.E., Glover, G.H., and Gabrieli, J.D. 1998. Selective effects of methylphenidate in attention deficit hyperactivity disorder: A functional magnetic resonance study. Proc. Natl. Acad. Sci. U.S.A. 95:14494‐14499.
   Valera, E.M., Faraone, S.V., Murray, K.E., and Seidman, L.J. 2007. Meta‐analysis of structural imaging findings in attention‐deficit/hyperactivity disorder. Biol. Psychiatry 61:1361‐1369.
   van den Bergh, F.S., Bloemarts, E., Chan, J.S., Groenink, L., Olivier, B., and Oosting, R.S. 2006. Spontaneously hypertensive rats do not predict symptoms of attention‐deficit hyperactivity disorder. Pharmacol. Biochem. Behav. 83:380‐390.
   Van den Buuse, M. 2004. Prepulse inhibition of acoustic startle in spontaneously hypertensive rats. Behav. Brain Res. 154:331‐337.
   van der Meere, J.J. 1996. The role of attention. In Monographs in Child and Adolescent Psychiatry. Hyperactivity Disorders of Childhood. (S.T. Sandberg, ed.) pp. 109‐146. Cambridge University Press, Cambridge, U.K.
   van Dyck, C.H., Quinlan, D.M., Cretella, L.M., Staley, J.K., Malison, R.T., Baldwin, R.M., Seibyl, J.P., and Innis, R.B. 2002. Unaltered dopamine transporter availability in adult attention deficit hyperactivity disorder. Am. J. Psychiatry 159:309‐312.
   Vendruscolo, L.F., Terenina‐Rigaldie, E., Raba, F., Ramos, A., Takahashi, R.N., and Mormede, P. 2006. A QTL on rat chromosome 7 modulates prepulse inhibition, a neuro‐behavioral trait of ADHD, in a Lewis x SHR intercross. Behav. Brain Funct. 2:21.
   Viggiano, D., Vallone, D., Welzl, H., and Sadile, A.G. 2002. The Naples High‐ and Low‐Excitability rats: selective breeding, behavioral profile, morphometry, and molecular biology of the mesocortical dopamine system. Behav. Genet. 32:315‐333.
   Volkow, N.D., Wang, G.J., Newcorn, J., Fowler, J.S., Telang, F., Solanto, M.V., Logan, J., Wong, C., Ma, Y., Swanson, J.M., Schulz, K., and Pradhan, K. 2007. Brain dopamine transporter levels in treatment and drug naive adults with ADHD. Neuroimage 34:1182‐1190.
   Watanabe, Y., Fujita, M., Ito, Y., Okada, T., Kusuoka, H., and Nishimura, T. 1997. Brain dopamine transporter in spontaneously hypertensive rats. J. Nucl. Med. 38:470‐474.
   Wiersema, J.R., van der Meere, J.J., and Roeyers, H. 2005. ERP correlates of impaired error monitoring in children with ADHD. J. Neural Transm. 112:1417‐1430.
   Williams, J., Sagvolden, G., Taylor, E., and Sagvolden, T. 2009a. Dynamic behavioural changes in the spontaneously hyperactive rat: 2. Control by novelty. Behav. Brain Res. 198:283‐290.
   Williams, J., Sagvolden, G., Taylor, E., and Sagvolden, T., 2009b. Dynamic behavioural changes in the spontaneously hypertensive rat: 3. Control by reinforcer rate changes and predictability. Behav. Brain Res. 198:291‐297.
   Willner, P. 1986. Validation criteria for animal models of human mental disorders: Learned helplessness as a paradigm case. Progr. Neuro‐Psychopharmacol. Biol. Psychiatry 10:677‐690.
   Wilson, M.C. 2000. Coloboma mouse mutant as an animal model of hyperkinesis and attention deficit hyperactivity disorder. Neurosci. Biobehav. Rev. 24:51‐57.
   Wyss, J.M., Fisk, G., and Van Groen, T. 1992. Impaired learning and memory in mature spontaneously hypertensive rats. Brain Res. 592:135‐140.
   Yan, T.C., Hunt, S.P., and Stanford, S.C. 2009. Behavioral and neurochemical abnormalities in mice lacking functional tachykinin‐1 (NK1) receptors: A model of attention deficit hyperactivity disorder. Neuropharmacology 57:627‐635.
   Zhang, K., Tarazi, F.I., and Baldessarini, R.J. 2001. Role of dopamine D(4) receptors in motor hyperactivity induced by neonatal 6‐hydroxydopamine lesions in rats. Neuropsychopharmacology 25:624‐632.
   Zhang, K., Davids, E., Tarazi, F.I., and Baldessarini, R.J. 2002a. Effects of dopamine D4 receptor‐selective antagonists on motor hyperactivity in rats with neonatal 6‐hydroxydopamine lesions. Psychopharmacology (Berl.) 161:100‐106.
   Zhang, K., Davids, E., Tarazi, F.I., and Baldessarini, R.J. 2002b. Serotonin transporter binding increases in caudate‐putamen and nucleus accumbens after neonatal 6‐hydroxydopamine lesions in rats: implications for motor hyperactivity. Brain Res. Dev. Brain Res. 137:135‐138.
   Zhuang, X., Oosting, R.S., Jones, S.R., Gainetdinov, R.R., Miller, G.W., Caron, M.G., and Hen, R. 2001. Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc. Natl. Acad. Sci. U.S.A. 98:1982‐1987.
PDF or HTML at Wiley Online Library