Computational Approach to Measuring Myocyte Disarray in Animal Models of Heart Disease

William Wan1, Leslie Leinwand1

1 Biofrontiers Institute, University of Colorado at Boulder, Boulder
Publication Name:  Current Protocols in Human Genetics
Unit Number:  Unit 15.11
DOI:  10.1002/cphg.35
Online Posting Date:  April, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

In cardiovascular disease research, studies often include measuring cardiac function and performing histological examination of heart tissue. After measuring contractility, hearts from animals such as mice and rats are often frozen or fixed, sliced, and stained to quantify the morphology of various structures such as extracellular matrix proteins, cell nuclei, and F‐actin. Traditional scoring methods have largely consisted of assessing sections of images for the presence or absence of myocyte disarray. These approaches require unbiased manual assessment, which can require extra personnel, and are not scalable to the quantity of data that can be generated by modern automated experimental techniques. Here, we describe an automated image analysis approach for unbiased numerical measurement of myocyte disarray. We provide step‐by‐step instructions for image preparation as well as a basic Matlab script for measurements. © 2017 by John Wiley & Sons, Inc.

Keywords: myocyte disarray; image analysis; Matlab

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1:

  Materials
  • Masson's trichrome–stained sections of mouse hearts (see, e.g., Green et al., , for preparation of samples used in this protocol)
  • Computer with following software installed:
    • Matlab (The MathWorks, Inc.)
    • ImageJ (National Institutes of Health)
  • Matlab script files (see Supporting Materials):
    • myocyte_disarray_160903.m (main file executed to perform calculations; the remaining files are used by the main file and should not be run directly)
    • c_mean_weighted.m
    • plot_rect_shaded.m
    • ReadImageJROI.m
    • struct2csv.m
  • Microsoft Excel, R, or GraphPad Prism
NOTE: Navigation to items in software menus will use the notation [Menu name]→[Item] →[Submenu].
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

  Armel, T. Z. & Leinwand, L. A. (2010). A mutation in the beta‐myosin rod associated with hypertrophic cardiomyopathy has an unexpected molecular phenotype. Biochemical and Biophysical Research Communications, 391, 352–356. doi: 10.1016/j.bbrc.2009.11.062.
  Cohen, J. (1977). Statistical Power Analysis for the Behavioral Sciences. Mahwah, NJ: Lawrence Earlbaum Associates.
  Eulalio, A., Mano, M., Ferro, M. D., Zentilin, L., Sinagra, G., Zacchigna, S., & Giacca, M. (2012). Functional screening identifies miRNAs inducing cardiac regeneration. Nature, 492, 376–381. doi: 10.1038/nature11739.
  Georgakopoulos, D., Christe, M. E., Giewat, M., Seidman, C. M., Seidman, J. G., & Kass, D. A. (1999). The pathogenesis of familial hypertrophic cardiomyopathy: Early and evolving effects from an alpha‐cardiac myosin heavy chain missense mutation. Nature Medicine, 5, 327–330. doi: 10.1038/6549.
  Green, E. M., Wakimoto, H., Anderson, R. L., Evanchik, M. J., Gorham, J. M., Harrison, B. C., Henze, M., Kawas, R., Oslob, J. D., Rodriguez, H. M., Song, Y., Wan, W., Leinwand, L. A., Spudich, J. A., McDowell, R.S., Seidman, J.G., & Seidman, C.E. (2016). A small‐molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science (New York, N.Y.), 351, 617–621.
  Hróbjartsson, A., Thomsen, A. S. S., Emanuelsson, F., Tendal, B., Rasmussen, J. V., Hilden, J., Boutron, I., Ravaud, P., & Brorson, S. 2014. Observer bias in randomized clinical trials with time‐to‐event outcomes: Systematic review of trials with both blinded and non‐blinded outcome assessors. International Journal of Epidemiology, 43, 937–948. doi: 10.1093/ije/dyt270.
  Kato, T. S., Noda, A., Izawa, H., Yamada, A., Obata, K., Nagata, K., Iwase, M., Murohara, T., & Yokota, M. 2004. Discrimination of nonobstructive hypertrophic cardiomyopathy from hypertensive left ventricular hypertrophy on the basis of strain rate imaging by tissue Doppler ultrasonography. Circulation, 110, 3808–3814. doi: 10.1161/01.CIR.0000150334.69355.00.
  Luckey, S. W., Mansoori, J., Fair, K., Antos, C. L., Olson, E. N., & Leinwand, L. A. 2007. Blocking cardiac growth in hypertrophic cardiomyopathy induces cardiac dysfunction and decreased survival only in males. American Journal of Physiology–Heart and Circulatory Physiology, 292, H838–845. doi: 10.1152/ajpheart.00615.2006.
  Maron, B. J., Wolfson, J. K., & Roberts, W. C. 1992. Relation between extent of cardiac muscle cell disorganization and left ventricular wall thickness in hypertrophic cardiomyopathy. American Journal of Cardiology, 70, 785–790. doi: 10.1016/0002‐9149(92)90560‐L.
  Ng, C. P., Hinz, B., & Swartz, M. A. 2005. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. Journal of Cell Science, 118, 4731. doi: 10.1242/jcs.02605.
  Roger, V. L., Go, A. S., Lloyd‐Jones, D. M., Adams, R. J., Berry, J. D., Brown, T. M., Carnethon, M. R., Dai, S., de Simone, G., Ford, E. S., Fox, C. S., Fullerton, H. J., Gillespie, C., Greenlund, K. J., Hailpern, S. M., Heit, J. A., Ho, P. M., Howard, V. J., Kissela, B. M., Kittner, S. J., Lackland, D. T., Lichtman, J. H., Lisabeth, L. D., Makuc, D. M., Marcus, G. M., Marelli, A., Matchar, D. B., McDermott, M. M., Meigs, J. B., Moy, C. S., Mozaffarian, D., Mussolino, M. E., Nichol, G., Paynter, N. P., Rosamond, W. D., Sorlie, P. D., Stafford, R. S., Turan, T. N., Turner, M. B., Wong, N. D., & Wylie‐Rosett, J. (2011) Executive summary: Heart disease and stroke statistics—2011 update. Circulation, 123, 459–463. doi: 10.1161/CIR.0b013e3182009701.
  Timmins, L. H., Wu, Q., Yeh, A. T., Moore, J. E., & Greenwald, S. E. 2010. Structural inhomogeneity and fiber orientation in the inner arterial media. American Journal of Physiology–Heart and Circulatory Physiology, 298, H1537–1545. doi: 10.1152/ajpheart.00891.2009.
  Wan, W., Dixon, J. B., & Gleason, R. L. 2012. Constitutive modeling of mouse carotid arteries using experimentally measured microstructural parameters. Biophysical Journal, 102, 2916–2925. doi: 10.1016/j.bpj.2012.04.035.
  Zar, J. H. 2010. Biostatistical analysis 5th edition. Upper Saddle River, NJ: Pearson Prentice‐Hall.
  Zhang, L., Allen, J., Hu, L., Caruthers, S. D., Wickline, S. A., & Chen, J. 2013. Cardiomyocyte architectural plasticity in fetal, neonatal, and adult pig hearts delineated with diffusion tensor MRI. American Journal of Physiology–Heart and Circulatory Physiology, 304, H246–52. doi: 10.1152/ajpheart.00129.2012.
Internet Resources
  http://www.mathworks.com/
  Site where Matlab can be purchased if not provided by your institution.
  https://www.mathworks.com/matlabcentral/fileexchange/32479‐readimagejroi‐cstrfilenames
  Matlab script used to extract coordinates of ROIs saved in ImageJ.
  https://imagej.nih.gov/ij/
  Web site to download ImageJ.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library