Dictyostelium discoideum: A Model System for Cell and Developmental Biology

Sabateeshan Mathavarajah1, Ana Flores1, Robert J. Huber1

1 Department of Biology, Trent University, Peterborough, Ontario
Publication Name:  Current Protocols Essential Laboratory Techniques
Unit Number:  Unit 14.1
DOI:  10.1002/cpet.15
Online Posting Date:  November, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


The social amoeba Dictyostelium discoideum has long served as a model system for studying fundamental processes in cell and developmental biology. This eukaryotic microbe is also recognized as a model organism for biomedical and human disease research since the genome encodes homologs of genes linked to human disease, such as those linked to cancer and neurodegeneration. Dictyostelium has a unique life cycle composed of a unicellular growth phase and a multicellular developmental phase that is induced by starvation. During its life cycle, Dictyostelium undergoes conserved cellular processes including, but not limited to, cell proliferation, phagocytosis, intercellular signaling, cell adhesion and motility, chemotaxis, and cell differentiation. The history of the organism, the resources available to researchers in the community, and the diverse ways that Dictyostelium is used in the contemporary research lab are discussed. © 2017 by John Wiley & Sons, Inc.

Keywords: Dictyostelium discoideum; growth; development; model system; human disease; host‐pathogen interactions; social evolution

PDF or HTML at Wiley Online Library

Table of Contents

  • Overview and Principles
  • Notable Discoveries Associated With Dictyostelium
  • New Ways Dictyostelium is used Today
  • Resources Available to Dictyostelium Researchers
  • Summary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

  Alexander, S., & Alexander, H. (2011). Lead genetic studies in Dictyostelium discoideum and translational studies in human cells demonstrate that sphingolipids are key regulators of sensitivity to cisplatin and other anticancer drugs. Seminars in Cell and Developmental Biology, 22, 97–104. doi: 10.1016/j.semcdb.2010.10.005.
  Annesley, S. J., Chen, S., Francione, L. M., Sanislav, O., Chavan, A. J., Farah, C., … Fisher, P. R. (2014). Dictyostelium, a microbial model for brain disease. Biochimica et Biophysica Acta, 1840, 1413–1432. doi: 10.1016/j.bbagen.2013.10.019.
  Arioka, M., Takahashi‐Yanaga, F., Kubo, M., Igawa, K., Tomooka, K., & Sasaguri, T. (2017). Anti‐tumor effects of differentiation‐inducing factor‐1 in malignant melanoma: GSK‐3‐mediated inhibition of cell proliferation and GSK‐3‐independent suppression of cell migration and invasion. Biochemical Pharmacology, 138, 31–48. doi: 10.1016/j.bcp.2017.05.004.
  Arhzaouy, K., Strucksberg, K., Tung, S., Tangavelou, K., Stumpf, M., Faix, J., … Eichinger, L. (2012). Heteromeric p97/p97r155c complexes induce dominant negative changes in wild‐type and autophagy 9‐deficient Dictyostelium strains. PLoS One, 7, e46879. doi: 10.1371/journal.pone.0046879.
  Artemenko, Y., Lampert, T. J., & Devreotes, P. N. (2014). Moving towards a paradigm: Common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cellular and Molecular Life Sciences, 71, 3711–3747. doi: 10.1007/s00018‐014‐1638‐8.
  Bershtein, S., Serohijos, A., & Shakhnovich, E. (2017). Bridging the physical scales in evolutionary biology: From protein sequence space to fitness of organisms and populations. Current Opinion in Structural Biology, 42, 31–40. doi: 10.1016/j.sbi.2016.10.013.
  Bonner, J. T., & Savage, L. (1947). Evidence for the formation of cell aggregates by chemotaxis in the development of the slime mold Dictyostelium discoideum. Journal of Experimental Zoology, 106, 1–26. doi: 10.1002/jez.1401060102.
  Bonner, J. T. (2009). The Social Amoebae: The Biology of Cellular Slime Molds. Princeton, NJ: Princeton University Press.
  Bozzaro, S., & Eichinger, L. (2011). The professional phagocyte Dictyostelium discoideum as a model host for bacterial pathogens. Current Drug Targets, 12, 942–954. doi: 10.2174/138945011795677782.
  Bozzaro, S., Bucci, C., & Steinert, M. (2008). Phagocytosis and host–pathogen interactions in Dictyostelium with a look at macrophages. International Review of Cell and Molecular Biology, 271, 253–300. doi: 10.1016/s1937‐6448(08)01206‐9.
  Bozzaro, S. (2013). The model organism Dictyostelium discoideum. Methods in Molecular Biology, 983, 17–37. doi: 10.1007/978‐1‐62703‐302‐2_2.
  Breuer, W., & Siu, C. H. (1981). Identification of endogenous binding proteins for the lectin discoidin‐I in Dictyostelium discoideum. Proceedings of the National Academy of Sciences of the United States of America, 78, 2115–2119. doi: 10.1073/pnas.78.4.2115.
  Brock, D., Douglas, T., Queller, D., & Strassmann, J. (2011). Primitive agriculture in a social amoeba. Nature, 469, 393–396. doi: 10.1038/nature09668.
  Buttery, N. J., Smith, J., Queller, D. C., & Strassmann, J. E. (2013). Measuring cheating, fitness, and segregation in Dictyostelium discoideum. Methods in Molecular Biology, 983, 231–248. doi: 10.1007/978‐1‐62703‐302‐2_12
  Cárcel‐Trullols, J., Kovács, A., & Pearce, D. (2015). Cell biology of the NCL proteins: What they do and don't do. Biochimica et Biophysica Acta, 1852, 2242–2255. doi: 10.1016/j.bbadis.2015.04.027
  Carnell, M. J., & Insall, R. H. (2011). Actin on disease–studying the pathobiology of cell motility using Dictyostelium discoideum. Seminars in Cell and Developmental Biology, 22, 82–88. doi: 10.1016/j.semcdb.2010.12.003.
  Cattaneo, E., Zuccato, C., & Tartari, M. (2005). Normal huntingtin function: An alternative approach to Huntington's disease. Nature Reviews Neuroscience, 6, 919–930. doi: 10.1038/nrn1806.
  Chang, P., Orabi, B., Deranieh, R. M., Dham, M., Hoeller, O., Shimshoni, J. A., … Williams, R. S. (2012). The antiepileptic drug valproic acid and other medium‐chain fatty acids acutely reduce phosphoinositide levels independently of inositol in Dictyostelium. Disease Models and Mechanisms, 5, 115–124. doi: 10.1242/dmm.008029.
  Chang, P., Walker, M. C., & Williams, R. S. (2014). Seizure‐induced reduction in PIP3 levels contributes to seizure‐activity and is rescued by valproic acid. Neurobiology of Disease, 62, 296–306. doi: 10.1016/j.nbd.2013.10.01.
  Charette, S. J., & Cosson, P. (2007). A LYST/beige homolog is involved in biogenesis of Dictyostelium secretory lysosomes. Journal of Cell Science, 120, 2338–2343. doi: 10.1242/jcs.009001.
  Chernova, T. A., Wilkinson, K. D., & Chernoff, Y. O. (2017). Prions, chaperones, and proteostasis in yeast. Cold Spring Harbor Perspectives in Biology, 9, a023663. doi: 10.1101/cshperspect.a023663.
  Clarke, M. (2010). Recent insights into host‐pathogen interactions from Dictyostelium. Cellular Microbiology, 12, 283–291. doi: 10.1111/j.1462‐5822.2009.01413.x.
  Collinge, J. (2016). Mammalian prions and their wider relevance in neurodegenerative diseases. Nature, 539, 217–226. doi: 10.1038/nature20415.
  Condeelis, J., Jones, J., & Segall, J. (1992). Chemotaxis of metastatic tumor cells: Clues to mechanisms from the Dictyostelium paradigm. Cancer and Metastasis Reviews, 11, 55–68. doi: 10.1007/bf00047603.
  Conti, F., Abnave, P., & Ghigo, E. (2014). Unconventional animal models: A booster for new advances in host‐pathogen interactions. Frontiers in Cellular and Infection Microbiology, 4, 142. doi: 10.3389/fcimb.2014.00142.
  Cosson, P., & Lima, W. (2014). Intracellular killing of bacteria: Is Dictyostelium a model macrophage or an alien? Cellular Microbiology, 16, 816–823. doi: 10.1111/cmi.12291.
  Cornillon, S., Dubois, A., Brückert, F., Lefkir, Y., Marchetti, A., Benghezal, M., … Cosson, P. (2002). Two members of the beige/CHS (BEACH) family are involved at different stages in the organization of the endocytic pathway in Dictyostelium. Journal of Cell Science, 115, 737–744.
  Cotter, D. A., & Raper, K. B. (1966). Spore germination in Dictyostelium discoideum. Proceedings of the National Academy of Sciences of the United States of America, 56, 880–887. doi: 10.1073/pnas.56.3.880.
  Cunliffe, V. T., Baines, R. A., Giachello, C. N., Lin, W. H., Morgan, A., Reuber, M., … Williams, R. S. (2015). Epilepsy research methods update: Understanding the causes of epileptic seizures and identifying new treatments using non‐mammalian model organisms. Seizure, 24, 44–51. doi: 10.1016/j.seizure.2014.09.018.
  de Hostos, E. L., Bradtke, B., Lottspeich, F., Guggenheim, R., & Gerisch, G. (1991). Coronin, an actin binding protein of Dictyostelium discoideum localized to cell surface projections, has sequence similarities to G protein beta subunits. EMBO Journal, 10, 4097–4104.
  Delincé, M., Bureau, J., López‐Jiménez, A., Cosson, P., Soldati, T., & McKinney, J. (2016). A microfluidic cell‐trapping device for single‐cell tracking of host–microbe interactions. Lab on a chip, 16, 3276–3285. doi: 10.1039/c6lc00649c.
  DiSalvo, S., Haselkorn, T., Bashir, U., Jimenez, D., Brock, D., Queller, D., & Strassmann, J. (2015). Burkholderia bacteria infectiously induce the proto‐farming symbiosis of Dictyostelium amoebae and food bacteria. Proceedings of the National Academy of Sciences of the United States of America, 112, E5029–E5037. doi: 10.1073/pnas.1511878112.
  Driscoll, D. M., Pears, C. J., & Williams, J. G. (1988). Characterization of two divergently transcribed Dictyostelium gene pairs and identification of G‐rich sequence element lying between them with the characteristics of a basal promoter element. Developmental Genetics, 9, 455–468. doi: 10.1002/dvg.1020090423.
  Driscoll, D. M., & Williams, J. G. (1987). Two divergently transcribed genes of Dictyostelium discoideum are cyclic AMP‐inducible and coregulated during development. Molecular and Cellular Biology, 7, 4482–4489. doi: 10.1128/MCB.7.12.4482.
  Du, Q., Kawabe, Y., Schilde, C., Chen, Z. H., & Schaap, P. (2015). The evolution of aggregative multicellularity and cell‐cell communication in the Dictyostelia. Journal of Molecular Biology, 427, 3722–3733. doi: 10.1016/j.jmb.2015.08.008.
  Faix, J., Linkner, J., Nordholz, B., Platt, J. L., Liao, X. H., & Kimmel, A. R. (2013). The application of the Cre‐loxP system for generating multiple knock‐out and knock‐in targeted loci. Methods in Molecular Biology, 983, 249–267. doi: 10.1007/978‐1‐62703‐302‐2_13.
  Falkenstein, K., & De Lozanne, A. (2014). Dictyostelium LvsB has a regulatory role in endosomal vesicle fusion. Journal of Cell Science, 127, 4356–4367. doi: 10.1242/jcs.138123.
  Fajardo, M. (2004). Calnexin, calreticulin and cytoskeleton‐associated proteins modulate uptake and growth of Legionella pneumophila in Dictyostelium discoideum. Microbiology, 150, 2825–2835. doi: 10.1099/mic.0.27111‐0.
  Fey, P., Kowal, A. S., Gaudet, P., Pilcher, K. E., & Chisholm, R. L. (2007). Protocols for growth and development of Dictyostelium discoideum. Nature Protocols, 2, 1307–1316. doi: 10.1038/nprot.2007.178.
  Fitchev, P. P., Wcislak, S. M., Lee, C., Bergh, A., Brendler, C. B., Stellmach, V. M., … Doll, J. A. (2010). Thrombospondin‐1 regulates the normal prostate in vivo through angiogenesis and TGF‐b activation. Laboratory Investigation, 90, 1078–1090. doi: 10.1038/labinvest.2010.90.
  Frej, A. D., Otto, G. P., & Williams, R. S. (2017). Tipping the scales: Lessons from simple model systems on inositol imbalance in neurological disorders. European Journal of Cell Biology, 96, 154–163. doi: 10.1016/j.ejcb.2017.01.007.
  Friedl, P., Borgmann, S., & Bröcker, E. B. (2001). Amoeboid leukocyte crawling through extracellular matrix: Lessons from the Dictyostelium paradigm of cell movement. Journal of Leukocyte Biology, 70, 491–509.
  Friedrich, M., Meier, D., Schuster, I., & Nellen, W. (2015). A simple retroelement based knock‐down system in Dictyostelium: Further insights into RNA interference mechanisms. PLoS One, 10, e0131271. doi: 10.1371/journal.pone.0131271.
  Gaudet, P., Fey, P., & Chisholm, R. (2008a). Multicellular development of Dictyostelium. Cold Spring Harbor Protocols, 2008, pdb.prot5100–pdb.prot5100. doi: 10.1101/pdb.prot5100.
  Gaudet, P., Pilcher, K. E., Fey, P., & Chisholm, R. L. (2007). Transformation of Dictyostelium discoideum with plasmid DNA. Nature Protocols, 2, 1317–1324. doi: 10.1038/nprot.2007.179.
  Gaudet, P., Fey, P., & Chisholm, R. (2008b). Making permanent stocks of Dictyostelium. Cold Spring Harbor Protocols, 2008, pdb.prot5101. doi: 10.1101/pdb.prot5101.
  Gilsbach, B. K., Ho, F. Y., Vetter, I. R., van Haastert, P. J., Wittinghofer, A., & Kortholt, A. (2012). Roco kinase structures give insights into the mechanism of Parkinson disease‐related leucine‐rich‐repeat kinase 2 mutations. Proceedings of the National Academy of Sciences of the United States of America, 109, 10322–10327. doi: 10.1073/pnas.1203223109.
  Gilsbach, B. K., & Kortholt, A. (2014). Structural biology of the LRRK2 GTPase and kinase domains: implications for regulation. Frontiers in Molecular Neuroscience, 7, 32. doi: 10.3389/fnmol.2014.00032.
  Glöckner, G., Eichinger, L., Szafranski, K., Pachebat, J. A., Bankier, A. T., Dear, P. H., … Dictyostelium Genome Sequencing Consortium (2002). Sequence and analysis of chromosome 2 of Dictyostelium discoideum. Nature, 418, 79–85. doi: 10.1038/nature00847.
  Glöckner, G., Lawal, H. M., Felder, M., Singh, R., Singer, G., Weijer, C. J., & Schaap, P. (2016). The multicellularity genes of Dictyostelid social amoebas. Nature Communications, 7, 12085. doi: 10.1038/ncomms12085.
  Golstein, P. (2017). Conserved nucleolar stress at the onset of cell death. FEBS Journal, in press. doi: 10.1111/febs.14095.
  Graham, T. R., Zassenhaus, H. P., & Kaplan, A. (1988). Molecular cloning of the cDNA which encodes beta‐N‐acetylhexosaminidase A from Dictyostelium discoideum. Complete amino acid sequence and homology with the human enzyme. Journal of Biological Chemistry, 263, 16823–16829.
  Grabel, L., & Loomis, W. F. (1978). Effector controlling accumulation of N‐acetylglucosaminidase during development of Dictyostelium discoideum. Developmental Biology, 64, 203–209. doi: 10.1016/0012‐1606(78)90072‐6.
  Harris, E., Wang, N., Wu, W. L., Weatherford, A., De Lozanne, A., & Cardelli, J. (2002). Dictyostelium LvsB mutants model the lysosomal defects associated with Chediak‐Higashi syndrome. Molecular Biology of the Cell, 13, 656–669. doi: 10.1091/mbc.01‐09‐0454.
  Ho, H., Hirose, S., Kuspa, A., & Shaulsky, G. (2013). Kin recognition protects cooperators against cheaters. Current Biology, 23, 1590–1595. doi: 10.1016/j.cub.2013.06.049.
  Huang, T., Wang, L., Liu, D., Li, P., Xiong, H., Zhuang, L., … Qiu, H. (2017). FGF7/FGFR2 signal promotes invasion and migration in human gastric cancer through upregulation of thrombospondin‐1. International Journal of Oncology, 50, 1501–1512.
  Huber, R. J., Myre, M., & Cotman, S. L. (2016). Aberrant adhesion impacts early development in a Dictyostelium model for juvenile neuronal ceroid lipofuscinosis. Cell Adhesion and Migration, 26, 1–20. doi: 10.1080/19336918.2016.1236179.
  Huber, R. J. (2017). Loss of Cln3 impacts protein secretion in the social amoeba Dictyostelium. Cellular Signaling, 35, 61–72. doi: 10.1016/j.cellsig.2017.03.022.
  Huber, R. J., & O'Day, D. H. (2017). Extracellular matrix dynamics and functions in the social amoeba Dictyostelium: A critical review. Biochimica et Biophysica Acta, 1861, 2971–2980. doi: 10.1016/j.bbagen.2016.09.026.
  Huber, R. J. (2016). Using the social amoeba Dictyostelium to study the functions of proteins linked to neuronal ceroid lipofuscinosis. Journal of Biomedical Science, 23, 83. doi: 10.1186/s12929‐016‐0301‐0.
  Huber, R. J., Myre, M., & Cotman, S. L. (2014). Loss of Cln3 function in the social amoeba Dictyostelium discoideum causes pleiotropic effects that are rescued by human CLN3. PLoS One, 9, e110544. doi: 10.1371/journal.pone.0110544.
  Huber, R. J. (2014). The cyclin‐dependent kinase family in the social amoebozoan Dictyostelium discoideum. Cellular and Molecular Life Sciences, 71, 629–639. doi: 10.1007/s00018‐013‐1449‐3.
  Huber, R. J., & O'Day, D. H. (2012). A matricellular protein and EGF‐like repeat signaling in the social amoebozoan Dictyostelium discoideum. Cellular and Molecular Life Sciences, 69, 3989–3997. doi: 10.1007/s00018‐012‐1068‐4.
  Hudson, R., Aukema, J., Rispe, C., & Roze, D. (2002). Altruism, cheating, and anti‐cheater adaptations in cellular slime molds. The American Naturalist, 160, 31–43. doi: 10.1086/340613.
  Journet, A., Chapel, A., Jehan, S., Adessi, C., Freeze, H., Klein, G., & Garin, J. (1999). Characterization of Dictyostelium discoideum cathepsin D. Journal of Cell Science, 112, 3833–3843.
  Kessin, R. (2000). Evolutionary biology: Cooperation can be dangerous. Nature, 408, 917–919. doi: 10.1038/35050184.
  Knecht, D., Cohen, S., Loomis, W., & Lodish, H. (1986). Developmental regulation of Dictyostelium discoideum actin gene fusions carried on low‐copy and high‐copy transformation vectors. Molecular and Cellular Biology, 6, 3973–3983. doi: 10.1128/mcb.6.11.3973.
  Konijn, T. M., & Raper, K. B. (1961). Cell aggregation in Dictyostelium discoideum. Developmental Biology, 3, 725–756. doi: 10.1016/0012‐1606(61)90038‐0.
  Kortholt, A., van Egmond, W. N., Plak, K., Bosgraaf, L., Keizer‐Gunnink, I., & van Haastert, P. J. (2012). Multiple regulatory mechanisms for the Dictyostelium Roco protein GbpC. Journal of Biological Chemistry, 287, 2749–2758. doi: 10.1074/jbc.M111.315739.
  Kreppel, L., Fey, P., Gaudet, P., Just, E., Kibbe, W. A., Chisholm, R. L., & Kimmel, A. R. (2004). dictyBase: A new Dictyostelium discoideum genome database. Nucleic Acids Research, 32, D332–333. doi: 10.1093/nar/gkh138.
  Kuhlmann, M., Popova, B., & Nellen, W. (2006). RNA interference and antisense‐mediated gene silencing in Dictyostelium. Methods in Molecular Biology, 346, 211–226.
  Kuspa, A. (2006). Restriction enzyme‐mediated integration (REMI) mutagenesis. Methods in Molecular Biology, 346, 201–209.
  Kypri, E., Falkenstein, K., & De Lozanne, A. (2013). Antagonistic control of lysosomal fusion by Rab14 and the Lyst‐related protein LvsB. Traffic, 14, 599–609. doi: 10.1111/tra.12058.
  Kypri, E., Schmauch, C., Maniak, M., & De Lozanne, A. (2007). The BEACH protein LvsB is localized on lysosomes and post‐lysosomes and limits their fusion with early endosomes. Traffic, 8, 774–783. doi: 10.1111/j.1600‐0854.2007.00567.x.
  Le Coadic, M., Froquet, R., Lima, W. C., Dias, M., Marchetti, A., & Cosson, P. (2013). Phg1/TM9 proteins control intracellular killing of bacteria by determining cellular levels of the Kil1 sulfotransferase in Dictyostelium. PLoS One, 8, e53259. doi: 10.1371/journal.pone.0053259.
  Leiba, J., Sabra, A., Bodinier, R., Marchetti, A., Lima, W., Melotti, A., … Cosson, P. (2017). Vps13F links bacterial recognition and intracellular killing in Dictyostelium. Cellular Microbiology, e12722. doi: https://doi.org/10.1111/cmi.12722.
  Lelong, E., Marchetti, A., Guého, A., Lima, W. C., Sattler, N., Molmeret, M., … Cosson, P. (2011). Role of magnesium and a phagosomal P‐type ATPase in intracellular bacterial killing. Cellular Microbiology, 13, 246–258. doi: 10.1111/j.1462‐5822.2010.01532.x.
  Levi, S., Polyakov, M., & Egelhoff, T. T. (2000). Green fluorescent protein and epitope tag fusion vectors for Dictyostelium discoideum. Plasmid, 44, 231–238. doi: 10.1006/plas.2000.1487.
  Liao, X., & Kimmel, A. (2017). A unique high‐throughput assay to identify novel small molecule inhibitors of chemotaxis and migration. Current Protocols in Cell Biology, 74, 12.11.1–12.11.13. doi: 10.1002/cpcb.17.
  Lima, W. C., Leuba, F., Soldati, T., & Cosson, P. (2012). Mucolipin controls lysosome exocytosis in Dictyostelium. Journal of Cell Science, 125, 2315–2322. doi: 10.1242/jcs.100362.
  Lima, W. C., Vinet, A., Pieters, J., & Cosson, P. (2014). Role of PKD2 in rheotaxis in Dictyostelium. PLOS One, 9, e88682. doi: 10.1371/journal.pone.0088682.
  Liu, X., Gao, Y., Lin, X., Li, L., Han, X., & Liu, J. (2016). The coronin family and human disease. Current Protein and Peptide Science, 17, 603–611. doi: 10.2174/1389203717666151201192011.
  Loomis, W. F. (1971). Sensitivity of Dictyostelium discoideum to nucleic acid analogues. Experimental Cell Research, 64, 484–486. doi: 10.1016/0014‐4827(71)90107‐8.
  Loomis, W. F. (1969). Acetylglucosaminidase, an early enzyme in the development of Dictyostelium discoideum. Journal of Bacteriology, 97, 1149–1154.
  Loomis, W. F. (1978). Genetic analysis of the gene for N‐acetylglucosaminidase in Dictyostelium discoideum. Genetics, 88, 277–284.
  Loomis, W. F. (1982). (Ed.), The development of dictyostelium discoideum. Cambridge, MA: Academic Press.
  Ludtmann, M. H., Otto, G. P., Schilde, C., Chen, Z. H., Allan, C. Y., Brace, S., … Williams, R. S. (2014). An ancestral non‐proteolytic role for presenilin proteins in multicellular development of the social amoeba Dictyostelium discoideum. Journal of Cell Science, 127, 1576–1584. doi: 10.1242/jcs.140939.
  Malinovska, L., & Alberti, S. (2015). Protein misfolding in Dictyostelium: Using a freak of nature to gain insight into a universal problem. Prion, 9, 339–346. doi: 10.1080/19336896.2015.1099799.
  Malinovska, L., Palm, S., Gibson, K., Verbavatz, J. M., & Alberti, S. (2015). Dictyostelium discoideum has a highly Q/N‐rich proteome and shows an unusual resilience to protein aggregation. Proceedings of the National Academy of Sciences of the United States of America, 112, E2620–2629. doi: 10.1073/pnas.1504459112.
  Marchetti, A., Mercanti, V., Cornillon, S., Alibaud, L., Charette, S. J., & Cosson, P. (2004). Formation of multivesicular endosomes in Dictyostelium. Journal of Cell Science, 117, 6053–6059. doi: 10.1242/jcs.01524.
  McMains, V., Myre, M., Kreppel, L., & Kimmel, A. (2010). Dictyostelium possesses highly diverged presenilin/gamma‐secretase that regulates growth and cell‐fate specification and can accurately process human APP: A system for functional studies of the presenilin/gamma‐secretase complex. Disease Models and Mechanisms, 3, 581–594. doi: 10.1242/dmm.004457.
  Mehta, D. P., Etchison, J. R., & Freeze, H. H. (1995). Characterization, subcellular localization, and developmental regulation of a cysteine proteinase from Dictyostelium discoideum. Archives of Biochemistry and Biophysicis, 321, 191–198. doi: 10.1006/abbi.1995.1385.
  Meyer, I., Kuhnert, O., & Gräf, R. (2011). Functional analyses of lissencephaly‐related proteins in Dictyostelium. Seminars in Cell and Developmental Biology, 22, 89–96. doi: 10.1016/j.semcdb.2010.10.007.
  Mole, S. E., & Cotman, S. L. (2015). Genetics of the neuronal ceroid lipofuscinoses (Batten disease). Biochimica et Biophysica Acta, 1852, 2237–2241. doi: 10.1016/j.bbadis.2015.05.011.
  Müller‐Taubenberger, A., & Ishikawa‐Ankerhold, H. C. (2013). Fluorescent reporters and methods to analyze fluorescent signals. Methods in Molecular Biology, 983, 93–112. doi: 10.1007/978‐1‐62703‐302‐2_5.
  Munro, K. M., Nash, A., Pigoni, M., Lichtenthaler, S. F., & Gunnersen, J. M. (2016). Functions of the Alzheimer's disease protease BACE1 at the synapse in the central nervous system. Journal of Molecular Neuroscience, 60, 305–315. doi: 10.1007/s12031‐016‐0800‐1.
  Myre, M. A. (2012). Clues to γ‐secretase, huntingtin and Hirano body normal function using the model organism Dictyostelium discoideum. Journal of Biomedical Science, 19, 41. doi: 10.1186/1423‐0127‐19‐41.
  Myre, M. A., Lumsden, A. L., Thompson, M. N., Wasco, W., MacDonald, M. E., & Gusella, J. F. (2011). Deficiency of huntingtin has pleiotropic effects in the social amoeba Dictyostelium discoideum. PLoS Genetics, 7, e1002052. doi: 10.1371/journal.pgen.1002052.
  Myre, M., Washicosky, K., Moir, R., Tesco, G., Tanzi, R., & Wasco, W. (2009). Reduced amyloidogenic processing of the amyloid β‐protein precursor by the small‐molecule differentiation inducing factor‐1. Cellular Signalling, 21, 567–576. doi: 10.1016/j.cellsig.2008.12.008.
  Niki, T., Kohno, T., Iba, S., Moriya, Y., Takahashi, Y., Saito, M., … Hirohashi, S. (2002). Frequent co‐localization of cox‐2 and laminin‐5 gamma2 chain at the invasive front of early‐stage lung adenocarcinomas. The American Journal of Pathology, 160, 1129–1141. doi: 10.1016/S0002‐9440(10)64933‐4.
  O'Day, D. H., & Keszei, A. (2012). Signalling and sex in the social amoebozoans. Biological Reviews of the Cambridge Philosophical Society, 87, 313–329. doi: 10.1111/j.1469‐185X.2011.00200.x.
  Ogawa, S., Yoshino, R., Angata, K., Iwamoto, M., Pi, M., Kuroe, K., … Tanaka, Y. (2000). The mitochondrial DNA of Dictyostelium discoideum: Complete sequence, gene content and genome organization. Molecular and General Genetics, 263, 514–519.
  Otto, G., Wu, M., Clarke, M., Lu, H., Anderson, O., & Hilbi, H., … Kessin, R. H. (2003). Macroautophagy is dispensable for intracellular replication of Legionella pneumophila in Dictyostelium discoideum. Molecular Microbiology, 51, 63–72. doi: 10.1046/j.1365‐2958.2003.03826.x.
  Pál, C., & Papp, B. (2000). Selfish cells threaten multicellular life. Trends in Ecology and Evolution, 15, 351–352. doi: 10.1016/s0169‐5347(00)01932‐7.
  Pears, C. J., & Lakin, N. (2014). Emerging models for DNA repair: Dictyostelium discoideum as a model for non‐homologous end‐joining. DNA Repair, 17, 121–131. doi: 10.1016/j.dnarep.2014.01.008.
  Pears, C. J., & Williams, J. G. (1988). Multiple copies of a G‐rich element upstream of a cAMP‐inducible Dictyostelium gene are necessary but not sufficient for efficient gene expression. Nucleic Acids Research, 16, 8467–8486. doi: 10.1093/nar/16.17.8467.
  Pears, C. J., Mahbubani, H. M., & Williams, J. G. (1985). Characterization of two highly diverged but developmentally co‐regulated cysteine proteinase genes in Dictyostelium discoideum. Nucleic Acids Research, 13, 8853–8866. doi: 10.1093/nar/13.24.8853.
  Phillips, J., & Gomer, R. H. (2015). Partial genetic suppression of a loss‐of‐function mutant of the neuronal ceroid lipofuscinosis‐associated protease TPP1 in Dictyostelium discoideum. Disease Models and Mechanisms, 8, 147–156. doi: 10.1242/dmm.018820.
  Queller, D. (2016). Kin selection and its discontents. Philosophy of Science, 83, 861–872. doi: 10.1086/687870.
  Radke, J., Stenzel, W., & Goebel, H. H. (2015). Human NCL neuropathology. Biochimica et Biophysica Acta, 1852, 2262–2266. doi: 10.1016/j.bbadis.2015.05.007.
  Rammal, H., Saby, C., Magnien, K., Van‐Gulick, L., Garnotel, R., Buache, E., … Morjani, H. (2016). Discoidin domain receptors: Potential actors and targets in cancer. Frontiers in Pharmacology, 7, 55. doi: 10.3389/fphar.2016.00055.
  Raper, K. B. (1937). Growth and development of Dictyostelium discoideum with different bacterial associates. Journal of Agricultural Research, 55, 289–316.
  Raper, K. B. (1984). The dictyostelids. Princeton, NJ: Princeton University Press.
  Raper, K. B. (1950). Stalk formation in Dictyostelium. Science, 112, 450.
  Rehberg, M., Kleylein‐Sohn, J., Faix, J., Ho, T. H., Schulz, I., & Gräf, R. (2005). Dictyostelium LIS1 is a centrosomal protein required for microtubule/cell cortex interactions, nucleus/centrosome linkage, and actin dynamics. Molecular Biology of the Cell, 16, 2759–2771. doi: 10.1091/mbc.E05‐01‐0069.
  Romeralo, M., Skiba, A., Gonzalez‐Voyer, A., Schilde, C., Lawal, H., Kedziora, S., … Schaap, P. (2013). Analysis of phenotypic evolution in Dictyostelia highlights developmental plasticity as a likely consequence of colonial multicellularity. Proceedings Biological Sciences, 280, 20130976. doi: 10.1098/rspb.2013.0976.
  Rupper, A., & Cardelli, J. (2001). Regulation of phagocytosis and endo‐phagosomal trafficking pathways in Dictyostelium discoideum. Biochimica et Biophysica Acta, 1525, 205–216. doi: 10.1016/s0304‐4165(01)00106‐4.
  Santarriaga, S., Petersen, A., Ndukwe, K., Brandt, A., Gerges, N., Bruns Scaglione, J., & Scaglione, K. (2015). The social amoeba Dictyostelium discoideum is highly resistant to polyglutamine aggregation. Journal of Biological Chemistry, 290, 25571–25578. doi: 10.1074/jbc.m115.676247.
  Schaap, P. (2016). Evolution of developmental signaling in Dictyostelid social amoebas. Current Opinion in Genetics and Development, 39, 29–34. doi: 10.1016/j.gde.2016.05.014.
  Schreiner, T., Mohrs, M., Blau‐Wasser, R., von Krempelhuber, A., Steinert, M., Schleicher, M., & Noegel, A. (2002). Loss of the F‐actin binding and vesicle‐associated protein comitin leads to a phagocytosis defect. Eukaryotic Cell, 1, 906–914. doi: 10.1128/ec.1.6.906‐914.2002.
  Solomon, J., & Isberg, R. (2000). Growth of Legionella pneumophila in Dictyostelium discoideum: A novel system for genetic analysis of host–pathogen interactions. Trends in Microbiology, 8, 478–480. doi: 10.1016/s0966‐842x(00)01852‐7.
  Solomon, J., Rupper, A., Cardelli, J., & Isberg, R. (2000). Intracellular growth of Legionella pneumophila in Dictyostelium discoideum, a system for genetic analysis of host‐pathogen interactions. Infection and Immunity, 68, 2939–2947. doi: 10.1128/iai.68.5.2939‐2947.2000.
  Springer, W. R., Cooper, D. N., & Barondes, S. H. (1984). Discoidin I is implicated in cell‐substratum attachment and ordered cell migration of Dictyostelium discoideum and resembles fibronectin. Cell, 39, 557–564. doi: 10.1016/0092‐8674(84)90462‐8.
  Srivastava, V., Iglesias, P. A., & Robinson, D. N. (2016). Cytokinesis: Robust cell shape regulation. Seminars in Cell and Developmental Biology, 53, 39–44. doi: 10.1016/j.semcdb.2015.10.023.
  Steinert, M., & Heuner, K. (2005). Dictyostelium as host model for pathogenesis. Cellular Microbiology, 7, 307–314. doi: 10.1111/j.1462‐5822.2005.00493.x.
  Stallforth, P., Brock, D., Cantley, A., Tian, X., Queller, D., Strassmann, J., & Clardy, J. (2013). A bacterial symbiont is converted from an inedible producer of beneficial molecules into food by a single mutation in the gacA gene. Proceedings of the National Academy of Sciences of the United States of America, 110, 14528–14533. doi: 10.1073/pnas.1308199110.
  Strassmann, J., & Queller, D. (2011). Evolution of cooperation and control of cheating in a social microbe. Proceedings of the National Academy of Sciences of the United States of America, 108, 10855–10862. doi: 10.1073/pnas.1102451108.
  Sucgang, R., Chen, G., Liu, W., Lindsay, R., Lu, J., Muzny, D., … Kuspa, A. (2003). Sequence and structure of the extrachromosomal palindrome encoding the ribosomal RNA genes in Dictyostelium. Nucleic Acids Research, 31, 2361–2368. doi: 10.1093/nar/gkg348.
  Sussman, R., & Sussman, M. (1967). Cultivation of Dictyostelium discoideum in axenic medium. Biochemical and Biophysical Research Communications, 29, 53–55. doi: 10.1016/0006‐291X(67)90539‐6.
  Swanson, A. R., Vadell, E. M., & Cavender, J. C. (1999). Global distribution of forest soil Dictyostelids. Journal of Biogeography, 26, 133–148. doi: 10.1046/j.1365‐2699.1999.00250.x.
  Takahashi, R. H., Nagao, T., & Gouras, G. K. (2017). Plaque formation and the intraneuronal accumulation of β‐amyloid in Alzheimer's disease. Pathology International, 67, 185–193. doi: 10.1111/pin.12520.
  The International Batten Disease Consortium (1995). Isolation of a novel gene underlying Batten disease, CLN3. Cell, 82, 949–957. doi: 10.1016/0092‐8674(95)90274‐0.
  Thompson, M. N., MacDonald, M. E., Gusella, J. F., & Myre, M. A. (2014). Huntingtin Supplies a csaA‐Independent Function Essential for EDTA‐Resistant Homotypic Cell Adhesion in Dictyostelium discoideum. Journal of Huntington's Disease, 3, 261–271. doi: 10.3233/JHD‐140112.
  Tosetti, N., Croxatto, A., & Greub, G. (2014). Amoebae as a tool to isolate new bacterial species, to discover new virulence factors and to study the host‐pathogen interactions. Microbial Pathogenesis, 77, 125–130. doi: 10.1016/j.micpath.2014.07.009.
  Traynor, D., & Kay, R. R. (2017). A polycystin‐type transient receptor potential (Trp) channel that is activated by ATP. Biology Open, 6, 200–209. doi: 10.1242/bio.020685.
  Tsunoda, T., Inada, H., Kalembeyi, I., Imanaka‐Yoshida, K., Sakakibara, M., Okada, R., … Yoshida, T. (2003). Involvement of large tenascin‐C splice variants in breast cancer progression. The American Journal of Pathology, 162, 1857–1867. doi: 10.1016/s0002‐9440(10)64320‐9.
  Ünal, C., & Steinert, M. (2006). Dictyostelium discoideum as a model to study host–pathogen interactions. Methods in Molecular Biology, 507–516. doi: 10.1385/1‐59745‐144‐4:507.
  van Egmond, W. N., Kortholt, A., Plak, K., Bosgraaf, L., Bosgraaf, S., Keizer‐Gunnink, I., & van Haastert, P. J. (2008). Intramolecular activation mechanism of the Dictyostelium LRRK2 homolog Roco protein GbpC. Journal of Biological Chemistry, 283, 30412–30420. doi: 10.1074/jbc.M804265200.
  van Egmond, W. N., & van Haastert, P. J. (2010). Characterization of the Roco protein family in Dictyostelium discoideum. Eukaryotic Cell, 9, 751–761. doi: 10.1128/EC.00366‐09.
  Veltman, D. M., Akar, G., Bosgraaf, L., & van Haastert, P. J. (2009). A new set of small, extrachromosomal expression vectors for Dictyostelium discoideum. Plasmid, 61, 110–108. doi: 10.1016/j.plasmid.2008.11.003.
  Waheed, A., Ludtmann, M. H., Pakes, N., Robery, S., Kuspa, A., Dinh, C., … Carew, M. A. (2014). Naringenin inhibits the growth of Dictyostelium and MDCK‐derived cysts in a TRPP2 (polycystin‐2)‐dependent manner. British Journal of Pharmacology, 171, 2659–2670. doi: 10.1111/bph.12443.
  Walker, F. (2007). Huntington's disease. The Lancet, 369, 218–228. doi: 10.1016/s0140‐6736(07)60111‐1.
  Wang, Y., Steimle, P. A., Ren, Y., Ross, C. A., Robinson, D. N., Egelhoff, T. T., … Iijima, M. (2011). Dictyostelium huntingtin controls chemotaxis and cytokinesis through the regulation of myosin II phosphorylation. Molecular Biology of the Cell, 22, 2270–2281. doi: 10.1091/mbc.E10‐11‐0926.
  Watts, D. J., & Ashworth, J. M. (1970). Growth of myxameobae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochemical Journal, 119, 171–174. doi: 10.1042/bj1190171.
  Wessels, D., Srikantha, T., Yi, S., Kuhl, S., Aravind, L., & Soll, D. R. (2006). The Shwachman‐Bodian‐Diamond syndrome gene encodes an RNA‐binding protein that localizes to the pseudopod of Dictyostelium amoebae during chemotaxis. Journal of Cell Science, 119, 370–379. doi: 10.1242/jcs.02753.
  Wessels, D., Lusche, D. F., Scherer, A., Kuhl, S., Myre, M. A., & Soll, D. R. (2014). Huntingtin regulates Ca(2+) chemotaxis and K(+)‐facilitated cAMP chemotaxis, in conjunction with the monovalent cation/H(+) exchanger Nhe1, in a model developmental system: Insights into its possible role in Huntington's disease. Developmental Biology, 394, 24–38. doi: 10.1016/j.ydbio.2014.08.009.
  Weis, F., Giudice, E., Churcher, M., Jin, L., Hilcenko, C., Wong, C. C., … Warren, A. J. (2015). Mechanism of eIF6 release from the nascent 60S ribosomal subunit. Nature Structural and Molecular Biology, 22, 914–919. doi: 10.1038/nsmb.3112.
  Weis, W. I., Nelson, W. J., & Dickinson, D. J. (2013). Evolution and cell physiology. 3. Using Dictyostelium discoideum to investigate mechanisms of epithelial polarity. American Journal of Physiology. Cell Physiology, 305, C1091–C1095. doi: 10.1152/ajpcell.00233.2013.
  Wilson, H., De Micco, R., Niccolini, F., & Politis, M. (2017). Molecular imaging markers to track Huntington's disease pathology. Frontiers in Neurology, 8, 11. doi: 10.3389/fneur.2017.00011.
  Williams, J. G., North, M. J., & Mahbubani, H. (1985). A developmentally regulated cysteine proteinase in Dictyostelium discoideum. EMBO Journal, 4, 999–1006.
  Wong, C. C., Traynor, D., Basse, N., Kay, R. R., & Warren, A. J. (2011). Defective ribosome assembly in Shwachman‐Diamond syndrome. Blood, 118, 4305–4312. doi: 10.1182/blood‐2011‐06‐353938.
  Wu, L., Rosa‐Neto, P., Hsiung, G. Y., Sadovnick, A. D., Masellis, M., Black, S. E., … Gauthier, S. (2012). Early‐onset familial Alzheimer's disease (EOFAD). The Canadian Journal of Neurological Sciences, 39, 436–445. doi: 10.1017/S0317167100013949.
  Xu, X., Müller‐Taubenberger, A., Adley, K. E., Pawolleck, N., Lee, V. W., Wiedemann, C., … Williams, R. S. (2007). Attenuation of phospholipid signaling provides a novel mechanism for the action of valproic acid. Eukaryotic Cell, 6, 899–906. doi: 10.1128/EC.00104‐06.
  Yamamoto, H., Itoh, F., Iku, S., Hosokawa, M., & Imai, K. (2001). Expression of the gamma (2) chain of laminin‐5 at the invasive front is associated with recurrence and poor prognosis in human esophageal squamous cell carcinoma. Clinical Cancer Research, 7, 896–900.
  Zhang, Y., Thompson, R., Zhang, H., & Xu, H. (2011). APP processing in Alzheimer's disease. Molecular Brain, 4, 3. doi: 10.1186/1756‐6606‐4‐3.
  Zoltowska, K. M., & Berezovska, O. (2017). Dynamic nature of presenilin1/γ‐secretase: Implication for Alzheimer's disease pathogenesis. Molecular Neurobiology, in press. doi: 10.1007/s12035‐017‐0487‐5.
Key References
  Eichinger, L., Pachebat, J. A., Glöckner, G., Rajandream, M. A., Sucgang, R., Berriman, M., … Kuspa, A. (2005). The genome of the social amoeba Dictyostelium discoideum. Nature, 435, 43–57. doi: 10.1038/nature03481.
  This article describes the features of dictyExpress, a gene expression database for Dictyostelium growth and development.
  This article reports the sequencing of the Dictyostelium genome and includes a discussion of the number of predicted proteins encoded by the genome and enriched gene families.
  Eichinger, L., & Rivero, F. (Eds.) (2013). Dictyostelium discoideum Protocols: Methods in molecular biology. Totowa, NJ: Humana Press.
  This methods book is the go‐to resource for commonly used techniques and approaches in Dictyostelium research.
  Fey, P., Dodson, R. J., Basu, S., & Chisholm, R. L. (2013). One stop shop for everything Dictyostelium: DictyBase and the Dicty Stock Center in 2012. Methods in Molecular Biology, 983, 59–92. doi: 10.1007/978‐1‐62703‐302‐2_4.
  This article describes the features of dictyBase, the online bioinformatics resource for Dictyostelium research, and the Dicty Stock Center, the central repository for Dictyostelium cell lines and expression constructs.
  Raper, K. B. (1935). Dictyostelium discoideum, a new species of slime mold from decaying forest leaves. Journal of Agricultural Research, 50, 135–147.
  This article was the first report in the scientific literature of the isolation and phenotypic characterization of Dictyostelium discoideum.
  Rot, G., Parikh, A., Curk, T., Kuspa, A., Shaulsky, G., & Zupan, B. (2009). dictyExpress: A Dictyostelium discoideum gene expression database with an explorative data analysis Web‐based interface. BMC Bioinformatics, 10, 256. doi: 10.1186/1471‐2105‐10‐265.
PDF or HTML at Wiley Online Library